Skip to content

Commit

Permalink
[Sigmas] Keep sigmas on CPU (huggingface#6173)
Browse files Browse the repository at this point in the history
* correct

* Apply suggestions from code review

* make style
  • Loading branch information
patrickvonplaten authored and donhardman committed Dec 18, 2023
1 parent ff4b3d2 commit 405ba0c
Show file tree
Hide file tree
Showing 13 changed files with 26 additions and 0 deletions.
2 changes: 2 additions & 0 deletions src/diffusers/schedulers/scheduling_consistency_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,7 @@ def __init__(
self.custom_timesteps = False
self.is_scale_input_called = False
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
Expand Down Expand Up @@ -230,6 +231,7 @@ def set_timesteps(
self.timesteps = torch.from_numpy(timesteps).to(device=device)

self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Modified _convert_to_karras implementation that takes in ramp as argument
def _convert_to_karras(self, ramp):
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/schedulers/scheduling_deis_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -187,6 +187,7 @@ def __init__(
self.model_outputs = [None] * solver_order
self.lower_order_nums = 0
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

@property
def step_index(self):
Expand Down Expand Up @@ -254,6 +255,7 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic

# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -214,6 +214,7 @@ def __init__(
self.model_outputs = [None] * solver_order
self.lower_order_nums = 0
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

@property
def step_index(self):
Expand Down Expand Up @@ -290,6 +291,7 @@ def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torc

# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -209,6 +209,7 @@ def __init__(
self.model_outputs = [None] * solver_order
self.lower_order_nums = 0
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
self.use_karras_sigmas = use_karras_sigmas

@property
Expand Down Expand Up @@ -289,6 +290,7 @@ def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torc

# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/schedulers/scheduling_dpmsolver_sde.py
Original file line number Diff line number Diff line change
Expand Up @@ -198,6 +198,7 @@ def __init__(
self.noise_sampler = None
self.noise_sampler_seed = noise_sampler_seed
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Copied from diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
Expand Down Expand Up @@ -347,6 +348,7 @@ def set_timesteps(
self.mid_point_sigma = None

self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
self.noise_sampler = None

# for exp beta schedules, such as the one for `pipeline_shap_e.py`
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
Original file line number Diff line number Diff line change
Expand Up @@ -197,6 +197,7 @@ def __init__(
self.sample = None
self.order_list = self.get_order_list(num_train_timesteps)
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

def get_order_list(self, num_inference_steps: int) -> List[int]:
"""
Expand Down Expand Up @@ -288,6 +289,7 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic

# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -166,6 +166,7 @@ def __init__(
self.is_scale_input_called = False

self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

@property
def init_noise_sigma(self):
Expand Down Expand Up @@ -249,6 +250,7 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic

self.timesteps = torch.from_numpy(timesteps).to(device=device)
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/schedulers/scheduling_euler_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -237,6 +237,7 @@ def __init__(
self.use_karras_sigmas = use_karras_sigmas

self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

@property
def init_noise_sigma(self):
Expand Down Expand Up @@ -341,6 +342,7 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic

self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/schedulers/scheduling_heun_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,6 +148,7 @@ def __init__(
self.use_karras_sigmas = use_karras_sigmas

self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
Expand Down Expand Up @@ -269,6 +270,7 @@ def set_timesteps(
self.dt = None

self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# (YiYi Notes: keep this for now since we are keeping add_noise function which use index_for_timestep)
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -140,6 +140,7 @@ def __init__(
# set all values
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Copied from diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
Expand Down Expand Up @@ -295,6 +296,7 @@ def set_timesteps(
self._index_counter = defaultdict(int)

self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -140,6 +140,7 @@ def __init__(
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)

self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Copied from diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
Expand Down Expand Up @@ -284,6 +285,7 @@ def set_timesteps(
self._index_counter = defaultdict(int)

self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

@property
def state_in_first_order(self):
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/schedulers/scheduling_lms_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,7 @@ def __init__(
self.is_scale_input_called = False

self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

@property
def init_noise_sigma(self):
Expand Down Expand Up @@ -279,6 +280,7 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic
self.sigmas = torch.from_numpy(sigmas).to(device=device)
self.timesteps = torch.from_numpy(timesteps).to(device=device)
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

self.derivatives = []

Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/schedulers/scheduling_unipc_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -198,6 +198,7 @@ def __init__(
self.solver_p = solver_p
self.last_sample = None
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

@property
def step_index(self):
Expand Down Expand Up @@ -268,6 +269,7 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic

# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
Expand Down

0 comments on commit 405ba0c

Please sign in to comment.