Skip to content

Commit

Permalink
init commit
Browse files Browse the repository at this point in the history
  • Loading branch information
dmMaze committed Apr 8, 2022
0 parents commit ed83dff
Show file tree
Hide file tree
Showing 19 changed files with 1,461 additions and 0 deletions.
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
build
__pycache__
9 changes: 9 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
cmake_minimum_required(VERSION 3.10)

file(GLOB SOURCES *.h *.cpp )
get_filename_component(full_path_test_cpp ${CMAKE_CURRENT_SOURCE_DIR}/test.cpp ABSOLUTE)
list(REMOVE_ITEM SOURCES "${full_path_test_cpp}")
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
add_library(patchmatch_inpaint SHARED ${SOURCES})
target_link_libraries(patchmatch_inpaint ${OpenCV_LIBRARIES})
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
PatchMatch based inpainting algorithm modified from https://github.com/vacancy/PyPatchMatch
Empty file added __init__.py
Empty file.
30 changes: 30 additions & 0 deletions cpp_out.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>

#include "masked_image.h"
#include "nnf.h"
#include "inpaint.h"

int main() {
auto source = cv::imread("./images/forest_pruned.bmp", cv::IMREAD_COLOR);

auto mask = cv::Mat(source.size(), CV_8UC1);
mask = cv::Scalar::all(0);
for (int i = 0; i < source.size().height; ++i) {
for (int j = 0; j < source.size().width; ++j) {
auto source_ptr = source.ptr<unsigned char>(i, j);
if (source_ptr[0] == 255 && source_ptr[1] == 255 && source_ptr[2] == 255) {
mask.at<unsigned char>(i, j) = 1;
}
}
}

auto metric = PatchSSDDistanceMetric(3);
auto result = Inpainting(source, mask, &metric).run(false, false);
cv::imwrite("./images/forest_recovered.bmp", result);
cv::imshow("Result", result);
cv::waitKey();

return 0;
}
19 changes: 19 additions & 0 deletions dllmain.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
// dllmain.cpp : 定义 DLL 应用程序的入口点。
#include "pch.h"

BOOL APIENTRY DllMain( HMODULE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved
)
{
switch (ul_reason_for_call)
{
case DLL_PROCESS_ATTACH:
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:
break;
}
return TRUE;
}

5 changes: 5 additions & 0 deletions framework.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
#pragma once

#define WIN32_LEAN_AND_MEAN // 从 Windows 头文件中排除极少使用的内容
// Windows 头文件
#include <windows.h>
283 changes: 283 additions & 0 deletions inpaint.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,283 @@
#include <algorithm>
#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>

#include "inpaint.h"

namespace {
static std::vector<double> kDistance2Similarity;

void init_kDistance2Similarity() {
double base[11] = { 1.0, 0.99, 0.96, 0.83, 0.38, 0.11, 0.02, 0.005, 0.0006, 0.0001, 0 };
int length = (PatchDistanceMetric::kDistanceScale + 1);
kDistance2Similarity.resize(length);
for (int i = 0; i < length; ++i) {
double t = (double)i / length;
int j = (int)(100 * t);
int k = j + 1;
double vj = (j < 11) ? base[j] : 0;
double vk = (k < 11) ? base[k] : 0;
kDistance2Similarity[i] = vj + (100 * t - j) * (vk - vj);
}
}


inline void _weighted_copy(const MaskedImage& source, int ys, int xs, cv::Mat& target, int yt, int xt, double weight) {
if (source.is_masked(ys, xs)) return;
if (source.is_globally_masked(ys, xs)) return;

auto source_ptr = source.get_image(ys, xs);
auto target_ptr = target.ptr<double>(yt, xt);

#pragma loop( ivdep )
for (int c = 0; c < 3; ++c)
target_ptr[c] += static_cast<double>(source_ptr[c]) * weight;
target_ptr[3] += weight;
}
}


/* This algorithme uses a version proposed by Xavier Philippeau.*/

Inpainting::Inpainting(cv::Mat image, cv::Mat mask, const PatchDistanceMetric* metric)
: m_initial(image, mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() {
_initialize_pyramid();
}

Inpainting::Inpainting(cv::Mat image, cv::Mat mask, cv::Mat global_mask, const PatchDistanceMetric* metric)
: m_initial(image, mask, global_mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() {
_initialize_pyramid();
}

void Inpainting::_initialize_pyramid() {
auto source = m_initial;
m_pyramid.push_back(source);
while (source.size().height > m_distance_metric->patch_size() && source.size().width > m_distance_metric->patch_size()) {
source = source.downsample();
m_pyramid.push_back(source);
}

if (kDistance2Similarity.size() == 0) {
init_kDistance2Similarity();
}
}

cv::Mat Inpainting::run(bool verbose, bool verbose_visualize, unsigned int random_seed) {
srand(random_seed);
const int nr_levels = m_pyramid.size();

MaskedImage source, target;
for (int level = nr_levels - 1; level >= 0; --level) {
if (verbose) std::cerr << "Inpainting level: " << level << std::endl;

source = m_pyramid[level];
if (verbose_visualize) {
auto visualize_size = m_initial.size();
cv::Mat source_visualize(visualize_size, m_initial.image().type());
cv::resize(source.image(), source_visualize, visualize_size);
cv::imshow("Source--0", source_visualize);
cv::waitKey(0);
}

if (level == nr_levels - 1) {
target = source.clone();
target.clear_mask();
m_source2target = NearestNeighborField(source, target, m_distance_metric);
m_target2source = NearestNeighborField(target, source, m_distance_metric);
}
else {
m_source2target = NearestNeighborField(source, target, m_distance_metric, m_source2target);
m_target2source = NearestNeighborField(target, source, m_distance_metric, m_target2source);
}

if (verbose) std::cerr << "Initialization done." << std::endl;

if (verbose_visualize) {
auto visualize_size = m_initial.size();
cv::Mat source_visualize(visualize_size, m_initial.image().type());
cv::resize(source.image(), source_visualize, visualize_size);
cv::imshow("Source", source_visualize);
cv::Mat target_visualize(visualize_size, m_initial.image().type());
cv::resize(target.image(), target_visualize, visualize_size);
cv::imshow("Target", target_visualize);
cv::waitKey(0);
}

target = _expectation_maximization(source, target, level, nr_levels, verbose);
}

return target.image();
}

// EM-Like algorithm (see "PatchMatch" - page 6).
// Returns a double sized target image (unless level = 0).
MaskedImage Inpainting::_expectation_maximization(MaskedImage source, MaskedImage target, int level, int nr_level, bool verbose) {
const int nr_iters_em = 1 + 2 * level;
const int nr_iters_nnf = static_cast<int>(std::min(7, 1 + level));
const int patch_size = m_distance_metric->patch_size();

MaskedImage new_source, new_target;

unsigned long distance_before_1 = 0, distance_before_2 = 0;

for (int iter_em = 0; iter_em < nr_iters_em; ++iter_em) {
if (iter_em != 0) {
m_source2target.set_target(new_target);
m_target2source.set_source(new_target);
target = new_target;
}

if (verbose) std::cerr << "EM Iteration: " << iter_em << std::endl;

auto size = source.size();
for (int i = 0; i < size.height; ++i) {
for (int j = 0; j < size.width; ++j) {
if (!source.contains_mask(i, j, patch_size)) {
m_source2target.set_identity(i, j);
m_target2source.set_identity(i, j);
}
}
}
if (verbose) std::cerr << " NNF minimization started." << std::endl;
bool can_skip = true;
//if (nr_level - level < 3)
// can_skip = false;
bool break_loop = false;
unsigned long distance_1 = m_source2target.minimize(nr_iters_nnf, true, can_skip);
unsigned long distance_2 = m_target2source.minimize(nr_iters_nnf, false, can_skip);
if (verbose) std::cerr << " NNF minimization finished." << std::endl;


if (distance_1 == 0 && distance_2 == 0 && level != 0 && iter_em != nr_iters_em - 1) {
break_loop = true;
//iter_em = nr_iters_em - 2;
//if (iter_em < 0)
// iter_em = 0;
}
if (distance_1 > 0 && distance_2 > 0 && level != 0 && iter_em != nr_iters_em - 1) {
double inc1 = double(distance_before_1) / distance_1;
double inc2 = double(distance_before_2) / distance_2;
//std::cerr << inc1 << " " << inc2 << std::endl;
if (distance_before_1 != 0 && distance_before_1 != 0 && inc1 < 1.0001 && inc2 < 1.0001) {
break_loop = true;
//iter_em = nr_iters_em - 2;
//if (iter_em < 0)
// iter_em = 0;
}
}

// Instead of upsizing the final target, we build the last target from the next level source image.
// Thus, the final target is less blurry (see "Space-Time Video Completion" - page 5).
bool upscaled = false;
if ((level >= 1 && iter_em == nr_iters_em - 1) || break_loop) {
new_source = m_pyramid[level - 1];
new_target = target.upsample(new_source.size().width, new_source.size().height, m_pyramid[level - 1].global_mask());
upscaled = true;
}
else {
new_source = m_pyramid[level];
new_target = target.clone();
}

auto vote = cv::Mat(new_target.size(), CV_64FC4);
vote.setTo(cv::Scalar::all(0));

// Votes for best patch from NNF Source->Target (completeness) and Target->Source (coherence).
_expectation_step(m_source2target, 1, vote, new_source, upscaled);
if (verbose) std::cerr << " Expectation source to target finished." << std::endl;
_expectation_step(m_target2source, 0, vote, new_source, upscaled);
if (verbose) std::cerr << " Expectation target to source finished." << std::endl;

// Compile votes and update pixel values.
_maximization_step(new_target, vote);
if (verbose) std::cerr << " Minimization step finished." << std::endl;


distance_before_1 = distance_1;
distance_before_2 = distance_2;
if (break_loop)
//std::cerr << "break loop" << std::endl;
break;
}

return new_target;
}

// Expectation step: vote for best estimations of each pixel.
void Inpainting::_expectation_step(
const NearestNeighborField& nnf, bool source2target,
cv::Mat& vote, const MaskedImage& source, bool upscaled
) {
auto source_size = nnf.source_size();
auto target_size = nnf.target_size();
const int patch_size = m_distance_metric->patch_size();

for (int i = 0; i < source_size.height; ++i) {
for (int j = 0; j < source_size.width; ++j) {
if (nnf.source().is_globally_masked(i, j)) continue;
if (source2target) {
if (!nnf.source().is_masked(i, j)) continue;
}
else {
if (nnf.source().is_masked(i, j)) continue;
}

int yp = nnf.at(i, j, 0), xp = nnf.at(i, j, 1), dp = nnf.at(i, j, 2);
double w = kDistance2Similarity[dp];

for (int di = -patch_size; di <= patch_size; ++di) {
for (int dj = -patch_size; dj <= patch_size; ++dj) {
int ys = i + di, xs = j + dj, yt = yp + di, xt = xp + dj;
if (!(ys >= 0 && ys < source_size.height && xs >= 0 && xs < source_size.width)) continue;
if (nnf.source().is_globally_masked(ys, xs)) continue;
if (!(yt >= 0 && yt < target_size.height && xt >= 0 && xt < target_size.width)) continue;
if (nnf.target().is_globally_masked(yt, xt)) continue;

if (!source2target) {
std::swap(ys, yt);
std::swap(xs, xt);
}

if (upscaled) {
for (int uy = 0; uy < 2; ++uy) {
for (int ux = 0; ux < 2; ++ux) {
_weighted_copy(source, 2 * ys + uy, 2 * xs + ux, vote, 2 * yt + uy, 2 * xt + ux, w);
}
}
}
else {
_weighted_copy(source, ys, xs, vote, yt, xt, w);
}
}
}
}
}
}

// Maximization Step: maximum likelihood of target pixel.
void Inpainting::_maximization_step(MaskedImage& target, const cv::Mat& vote) {
auto target_size = target.size();
for (int i = 0; i < target_size.height; ++i) {
for (int j = 0; j < target_size.width; ++j) {
const double* source_ptr = vote.ptr<double>(i, j);
unsigned char* target_ptr = target.get_mutable_image(i, j);

if (target.is_globally_masked(i, j)) {
continue;
}

if (source_ptr[3] > 0) {
unsigned char r = cv::saturate_cast<unsigned char>(source_ptr[0] / source_ptr[3]);
unsigned char g = cv::saturate_cast<unsigned char>(source_ptr[1] / source_ptr[3]);
unsigned char b = cv::saturate_cast<unsigned char>(source_ptr[2] / source_ptr[3]);
target_ptr[0] = r, target_ptr[1] = g, target_ptr[2] = b;
}
else {
target.set_mask(i, j, 0);
}
}
}
}

28 changes: 28 additions & 0 deletions inpaint.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
#pragma once

#include <vector>

#include "masked_image.h"
#include "nnf.h"

class Inpainting {
public:
Inpainting(cv::Mat image, cv::Mat mask, const PatchDistanceMetric* metric);
Inpainting(cv::Mat image, cv::Mat mask, cv::Mat global_mask, const PatchDistanceMetric* metric);
cv::Mat run(bool verbose = false, bool verbose_visualize = false, unsigned int random_seed = 1212);

private:
void _initialize_pyramid(void);
MaskedImage _expectation_maximization(MaskedImage source, MaskedImage target, int level, int nr_level, bool verbose);
void _expectation_step(const NearestNeighborField& nnf, bool source2target, cv::Mat& vote, const MaskedImage& source, bool upscaled);
void _maximization_step(MaskedImage& target, const cv::Mat& vote);

MaskedImage m_initial;
std::vector<MaskedImage> m_pyramid;

NearestNeighborField m_source2target;
NearestNeighborField m_target2source;
const PatchDistanceMetric* m_distance_metric;
};


Loading

0 comments on commit ed83dff

Please sign in to comment.