- Create a Resource group
- Create an Azure Machine Learning Service
- Install az cli - https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
- Install ml package in az cli - https://learn.microsoft.com/en-us/azure/machine-learning/how-to-configure-cli?view=azureml-api-2&tabs=public
- az login
- Install VS Code
- Install Azure Machine Learning extension for VS Code
- Log into the AML Workspace
- Create your compute instance by completing the 00-create-compute-instance.yml file. Use the
az ml compute create --file 01-create-compute-instance.yml
command. Additional params - https://learn.microsoft.com/en-gb/azure/machine-learning/reference-yaml-compute-instance?view=azureml-api-2
- Populate the MLTable file with instructions on how to read the csv in the ./data folder
- Create a data asset by completing the 01-create-data-asset.yml file. Use
az ml data create --path ./data --name <DATA ASSET NAME> --version <VERSION> --type mltable
oraz ml data create --file 02-create-data-asset.yml
- Explore and edit the workstation_env.yaml file under the conda_yamls directory
- Create an environment by completing the 02-create-environment.yml file, Use
az ml environment create --file 03-create-environment.yml
- Author/execute the notebook using the Portal/VS Code
Same as exercise 1
- Explore and edit the train-model.yml file
- Create/submit a job using CLI.
az ml job create --file 05-train-model.yml
az ml job show -n $run_id --web
az ml model create -n sklearn-iris-example -v 1 -p runs:/$run_id/model --type mlflow_model
- Explore and edit the create-endpoint.yml file
- Create an endpoint using CLI.
az ml online-endpoint create --file 06-create-endpoint.yml
- Explore and edit the create-deployment.yml file
- Create an deployment using CLI.
az ml online-deployment create --file 07-create-deployment.yml