-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5b92924
commit de348f0
Showing
1 changed file
with
73 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
from trak import TRAKer | ||
from trak.projectors import BasicProjector, CudaProjector, NoOpProjector | ||
from trak.projectors import ProjectionType | ||
|
||
from typing import Literal, Optional, Union | ||
import os | ||
import torch | ||
|
||
from quanda.explainers import BaseExplainer | ||
|
||
TRAKProjectorLiteral=Literal["cuda", "noop", "basic"] | ||
TRAKProjectionTypeLiteral=Literal["rademacher", "normal"] | ||
|
||
class TRAK(BaseExplainer): | ||
def __init__( | ||
self, | ||
model: torch.nn.Module, | ||
model_id: str, | ||
cache_dir: Optional[str], | ||
train_dataset: torch.utils.data.Dataset, | ||
device: Union[str, torch.device], | ||
projector: TRAKProjectorLiteral="basic", | ||
proj_dim: int=128, | ||
proj_type: TRAKProjectionTypeLiteral="normal", | ||
seed: int=42, | ||
batch_size: int=32, | ||
): | ||
super(TRAK, self).__init__(model=model, train_dataset=train_dataset, model_id=model_id, cache_dir=cache_dir, device=device) | ||
self.dataset=train_dataset | ||
self.batch_size=batch_size | ||
proj_type=ProjectionType.normal if proj_type=="normal" else ProjectionType.rademacher | ||
|
||
number_of_params=0 | ||
for p in list(self.model.sim_parameters()): | ||
nn = 1 | ||
for s in list(p.size()): | ||
nn = nn * s | ||
number_of_params += nn | ||
|
||
projector_cls = { | ||
"cuda": CudaProjector, | ||
"basic": BasicProjector, | ||
"noop": NoOpProjector | ||
} | ||
|
||
projector_kwargs={ | ||
"grad_dim": number_of_params, | ||
"proj_dim": proj_dim, | ||
"proj_type": proj_type, | ||
"seed": seed, | ||
"device": device | ||
} | ||
projector=projector_cls[projector](**projector_kwargs) | ||
self.traker = TRAKer(model=model, task='image_classification', train_set_size=len(train_dataset), | ||
projector=projector, proj_dim=proj_dim, projector_seed=seed, save_dir=cache_dir) | ||
|
||
#Train the TRAK explainer: featurize the training data | ||
ld=torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size) | ||
self.traker.load_checkpoint(self.model.state_dict(),model_id=0) | ||
for (i,(x,y)) in enumerate(iter(ld)): | ||
batch=x.to(self.device), y.to(self.device) | ||
self.traker.featurize(batch=batch,inds=torch.tensor([i*self.batch_size+j for j in range(self.batch_size)])) | ||
self.traker.finalize_features() | ||
|
||
def explain(self, x, targets): | ||
x=x.to(self.device) | ||
self.traker.start_scoring_checkpoint(model_id=0, | ||
checkpoint=self.model.state_dict(), | ||
exp_name='test', | ||
num_targets=x.shape[0]) | ||
self.traker.score(batch=(x,targets), num_samples=x.shape[0]) | ||
return torch.from_numpy(self.traker.finalize_scores(exp_name='test')).T.to(self.device) | ||
|