-
Notifications
You must be signed in to change notification settings - Fork 5
/
autoScan.py
executable file
·411 lines (353 loc) · 13.7 KB
/
autoScan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#!/usr/bin/env python
__author__ = 'Danny Goldstein <[email protected]>'
__ml_version__ = 3
prog_name = 'autoScan'
description = '''autoScan: DESSN's automated supernova candidate scanner.
takes in 51x51 pixel cutouts of objects produced by makeStamps and scores
them from 0 to 1. objects with higher scores are more likely to be SNe.
uses the ML3 algorithm.'''
prog = './autoScan.py'
# Line for automated diffim manual generation
# Define OracleTableName_SNAUTOSCAN // write object scores, ml version.
from argparse import FileType, ArgumentParser
import sys
def autoscan_arg_parser():
'''Create the autoScan CLI argument parser.'''
parser = ArgumentParser(description=description, prog=prog)
# Collect input file arguments into a group.
pred_file_info = '''Please do not use any regular expressions or
shell environment variables in the filenames you pass to these
arguments. They will not be parsed.'''
pred_files = parser.add_argument_group('Mandatory Inputs', pred_file_info)
# Collect database arguments into a group.
db_args = parser.add_argument_group('Database Options')
# Collect miscellaneous options into a group.
misc_opts = parser.add_argument_group('Miscellaneous Options')
# Input file arguments.
pred_files.add_argument(
'-inDir_stamps',
metavar='STAMPDIR',
dest='stamppath',
required=True,
help='Folder containing stamps.')
pred_files.add_argument(
'-inFile_stampList',
metavar='STAMPLIST',
dest='stamplist',
required=True,
help='Relative path to stamp list file in the directory tree'
' rooted at STAMPDIR.',
type=str)
pred_files.add_argument(
'-outFile_results',
dest='results',
required=True,
help='File in which to write classification results for processed objects.',
type=FileType('w'))
pred_files.add_argument(
'-inFile_scaler',
dest='scaler',
required=True,
help='Scaler binary.',
type=FileType('rb'))
pred_files.add_argument(
'-inFile_imputer',
dest='imputer',
required=True,
help='Imputer binary.',
type=FileType('rb'))
pred_files.add_argument(
'-inFile_model',
dest='model',
required=True,
help='Classifier binary.',
type=str)
# Database arguments.
db_args.add_argument(
'-writeDB',
dest='writedb',
help='If flagged, write results to database.',
action='store_true')
db_args.add_argument(
'-inFile_desservices',
dest='des_services',
help='Use the specified file instead of $DES_SERVICES.',
default=None,
type=str)
db_args.add_argument(
"-des_db_section",
required=False,
dest="des_db_section",
default=None,
help="Section of .desservices file with connection info (db-desoper, db-destest)." \
"If not specified, will use $DES_DB_SECTION.",
type=str)
db_args.add_argument(
"-readlegacyDB",
required=False,
action='store_true',
default=False,
dest='readlegacyDB',
help='If true, read object data from SNOBS_LEGACY instead of SNOBS.')
db_args.add_argument(
"-writelegacyDB",
required=False,
action='store_true',
default=False,
dest='writelegacyDB',
help='If true, only write v2 columns to SNAUTOSCAN.')
# Miscellaneous options.
misc_opts.add_argument(
'-inFile_objList',
metavar='OBJLIST',
dest='objlist',
required=False,
default=None,
help='filterObj file for detections in STAMPLIST. Specify to speed up program execution.',
type=FileType('r'))
misc_opts.add_argument(
'-outFile_stdout',
metavar='logfile',
dest='log',
help='The logfile.',
default=sys.stdout,
type=str)
misc_opts.add_argument(
'-debug',
dest='debug',
required=False,
help='Run classifier in debug (verbose) mode. ' \
'Log useful error messages and program state to logfile.',
action='store_true')
misc_opts.add_argument(
'-n_jobs',
dest='n_jobs',
required=False,
help='Number of processes to use for feature extraction.',
type=int,
default=1)
return parser
# Create argparser.
parser = autoscan_arg_parser()
ins = parser.parse_args()
def produce_failure(idlist):
'''Write a results file for a complete program failure. This
method is called when no detections are successfully processed.'''
logging.error('Writing failure to %s', ins.results)
snfake_ids = list()
cursor = db_connect.db_connect(ins.des_services, ins.des_db_section)
snobs_table = 'SNOBS_LEGACY' if ins.readlegacyDB else 'SNOBS'
fake_id_query = 'SELECT snfake_id FROM %s WHERE snobjid = :id' % snobs_table
for ob in idlist:
cursor.execute(fake_id_query, id=int(ob))
try:
result = cursor.fetchone()[0]
wrong_db = False
except TypeError:
logging.error('**Error writing failure!**')
logging.error('%d is not present in %s!', ob,
'SNOBS' if not ins.readlegacyDB else 'SNOBS_LEGACY')
logging.error('This indicates that you may be connected to the wrong database.')
logging.error('**MAKE SURE YOUR DES_DB_SECTION IS CONFIGURED PROPERLY!**')
wrong_db = True
break
snfake_ids.append(result)
ins.results.write('ML_VERSION: %d\n' % __ml_version__)
if not wrong_db:
ins.results.write('NVAR_OBJ: 3\n')
ins.results.write('VARNAMES_OBJ:\tSNOBJID\t\tSCORE\tSNFAKE_ID\n')
for objid, snfid in zip(idlist, snfake_ids):
ins.results.write('OBJ:{3}{0}\t{1}\t{2}\n'.format(objid, -9., snfid, ' ' * 12))
else:
ins.results.write('NVAR_OBJ: 2\n')
ins.results.write('VARNAMES_OBJ:\tSNOBJID\t\tSCORE\n')
for objid in idlist:
ins.results.write('OBJ:{2}{0}\t{1}\n'.format(objid, -9., ' ' * 12))
exit(1)
def publish_results(data_dict):
"""Write results to results file."""
snfake_ids = list()
fluxes = list()
logging.debug('Connecting to db...')
cursor = db_connect.db_connect(ins.des_services, ins.des_db_section)
logging.debug('Success.')
snobs_table = 'SNOBS_LEGACY' if ins.readlegacyDB else 'SNOBS'
query = 'SELECT snfake_id, flux FROM %s WHERE snobjid = :id' % snobs_table
snobjids = data_dict.keys()
for ob in data_dict:
logging.debug('Executing query')
cursor.execute(query, id=int(ob))
logging.debug('Executed %s ' % query)
result = cursor.fetchone()
if result is None:
try:
result = [ins.objlist[ins.objlist['snobjid'] == ob][key][0] for key in ('snfake_id', 'flux')]
except KeyError:
produce_failure(snobjids)
snfake_ids.append(result[0])
fluxes.append(result[1])
ins.results.write('ML_VERSION: {0}\n'.format(__ml_version__))
ins.results.write('NVAR_OBJ: 4\n')
colnames = 'VARNAMES_OBJ:\tSNOBJID SCORE\tFLUX\t SNFAKE_ID\n'
ins.results.write(colnames)
result_string = 'OBJ:{4}{0}\t{1}\t{2}\t{3}\n'
for objid, flux, snfake_id in zip(snobjids, fluxes, snfake_ids):
if 'ml_score' in data_dict[objid].keys():
score = data_dict[objid]['ml_score']
else:
score = -9.
if flux is None:
flux = -9.
outtup = (objid, round(score, 3), flux, snfake_id,' ' * 12)
ins.results.write(result_string.format(*outtup))
# update SNautoscan
def write_db(data_dict):
cursor = db_connect.db_connect(ins.des_services, ins.des_db_section)
taskid = os.getenv("DESDMFW_TASKID", None)
cursor.callproc("setDesCtx", [taskid])
insert = 'INSERT INTO SNAUTOSCAN (%s) VALUES (%s)'
update = 'UPDATE SNAUTOSCAN SET %s WHERE SNOBJID=:snobjid AND ML_VERSION=:ml_version'
for objid in data_dict:
names = data_dict[objid].keys()
if ins.writelegacyDB:
names = [name for name in names if name in FEATS_LEGACY + ['snobjid', 'ml_version', 'ml_score']]
values = [':' + name for name in names]
this_insert = insert % (', '.join(names), ', '.join(values))
equalities = ', '.join(['='.join(elem) for elem in zip(names, values)])
this_update = update % equalities
safestr = lambda x: str(x) if not np.isnan(x) else np.nan
strdict = {key: safestr(data_dict[objid][key]) for key in data_dict[objid] if key in names}
try:
logging.info('Attempting insert for %s.', objid)
logging.debug('Query is %s' % this_insert)
logging.debug('Strdict is %s' % strdict)
cursor.execute(this_insert, **strdict)
logging.info('Success.')
except cx_Oracle.IntegrityError as e:
logging.info('%s is already present in the DB.', objid)
logging.info('Attempting update for %s.', objid)
cursor.execute(this_update, **strdict)
logging.info('Success.')
logging.debug('%d rows affected.', cursor.rowcount)
cursor.connection.commit()
cursor.close()
cursor.connection.close()
def classify(X, clf, imputer, scaler):
"""Classify an autoScan feature array with a trained model. Return the
IDs and scores of the classified detections.
Parameters
----------
X: array_like
Record array with named fields (one of which must be 'SNOBJID')
and all features to be used for classification.
clf: sklearn.RandomForestClassifier
The model to use for classification.
"""
if len(X) == 0:
logging.error('Empty X passed to classify.')
raise NoDataException
X_feats_unscaled = X[FEATS]
X_snobs = X['snobjid']
# Imputer, scaler.
logging.info('Imputing and scaling features...')
x = scaler.transform(imputer.transform(np.asarray(X_feats_unscaled.tolist())))
# Classify.
logging.info('Scoring.')
clf.n_jobs = 1
probs = clf.predict_proba(x)
rb_scores = probs[:, 1]
return X_snobs, rb_scores
# Main routine.
if __name__ == '__main__':
import os
import numpy as np
from autoscan import *
import pickle
import joblib
import logging
from time import time
import cx_Oracle
start = time()
# Setup logging.
log_kw = dict()
if ins.log != sys.stdout:
log_kw = {'filename': ins.log,
'filemode': 'w'}
log_kw['level'] = logging.INFO
else:
log_kw['level'] = logging.INFO
if ins.debug:
log_kw['level'] = logging.DEBUG
logging.basicConfig(format='%(asctime)s:%(levelname)s: %(message)s',
datefmt='%m/%d/%Y %I:%M:%S %p', **log_kw)
# Summarize inputs.
logging.info('Received inputs: %s.', ins)
# Read list of stamps.
stamps_fullpath = os.path.join(ins.stamppath, ins.stamplist)
logging.info('Acquiring stamps from %s.', stamps_fullpath)
ps = lambda stamppath: os.path.join(ins.stamppath, stamppath)
stamp_array = np.atleast_1d(np.genfromtxt(stamps_fullpath,
dtype=None,
usecols=[1, 2, 3, 4],
names=(
'id',
'srch',
'temp',
'diff'),
converters={
'srch':ps,
'temp':ps,
'diff':ps,
},
autostrip=True))
if len(stamp_array) == 0:
logging.error('Input file %s is empty.', ins.stamplist)
produce_failure(stamp_array['id'])
# Load classifiers.
logging.info('Loading classifier.')
try:
clf = joblib.load(ins.model)
except Exception as e:
logging.error('', exc_info=True)
raise e
logging.debug('Loaded %s.', ins.model)
# Load binaries.
imputer = pickle.load(ins.imputer)
scaler = pickle.load(ins.scaler)
# Load objlist if specified.
if ins.objlist is not None:
ins.objlist = features.read_filterObj_file(ins.objlist)
# Extract features.
logging.info('Beginning core feature extraction loop.')
try:
data = features.extract_features(stamp_array, **vars(ins))
except Exception as e:
logging.error('', exc_info=True)
logging.error('Wrote failure to %s.', ins.log)
produce_failure(stamp_array['id'])
raise e
# Success?
if len(data) == 0:
produce_failure(stamp_array['id'])
# Munge output of `extract_features`.
names = ['snobjid'] + FEATS
formats = ['<i8'] + ['<f8'] * len(FEATS)
X_dtype = np.dtype(zip(names, formats))
X = np.array([tuple([data[key][name] for name in names])
for key in data if 'error_msg' not in
data[key].keys()], dtype=X_dtype)
# Classify objects.
try:
snobjids, scores = classify(X, clf, imputer, scaler)
except NoDataException:
produce_failure(stamp_array['id'])
for objid, score in zip(snobjids, scores):
data[objid]['ml_score'] = score
# Write results to file.
publish_results(data)
# And to database.
if ins.writedb:
write_db(data)
end = time()
logging.info('Program terminated successfully.')
logging.info('Execution time: %.2f seconds.', end - start)