-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #136 from deepskies/paper-edits
Paper edits
- Loading branch information
Showing
16 changed files
with
945 additions
and
260 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
from deepbench.image import SkyImage, ShapeImage | ||
from deepbench.physics_object import HamiltonianPendulum, Pendulum | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
|
||
|
||
# Each image is 480,480 | ||
image_shape = (480, 480) | ||
|
||
# Total images N and figure size | ||
fig, subplots = plt.subplots(2, 4, figsize=(12, 6)) | ||
|
||
# Center of all images is at 480/2, 480/2 | ||
center = image_shape[0] / 2 | ||
|
||
|
||
# Parameters for each ellipse | ||
ellipse_params = { | ||
"center": (center, center), | ||
"width": 100, | ||
"height": 200, | ||
"fill": True, | ||
"angle": 30, | ||
} | ||
shape_single = ShapeImage(image_shape, object_noise_level=0.0) | ||
single_shape_noiseless = shape_single.combine_objects( | ||
["ellipse"], object_params=[ellipse_params] | ||
) | ||
|
||
subplots[0, 0].imshow(single_shape_noiseless) | ||
|
||
# Use the same parameters to make an ellipse with noise | ||
shape_single = ShapeImage(image_shape, object_noise_level=0.4) | ||
shape_single_noisy = shape_single.combine_objects( | ||
["ellipse"], object_params=[ellipse_params] | ||
) | ||
|
||
subplots[0, 1].imshow(shape_single_noisy) | ||
|
||
# Produce a rectangle with specified line widths | ||
line_params = { | ||
"center": (center + int(center / 2), center), | ||
"width": 120, | ||
"height": 200, | ||
"line_width": 20, | ||
} | ||
shape_two = ShapeImage(image_shape, object_noise_level=0) | ||
# Use the combine objects method to make ellipses and rectangles with the above prameters | ||
shape_two_noiseless = shape_two.combine_objects( | ||
["ellipse", "rectangle"], object_params=[ellipse_params, line_params] | ||
) | ||
|
||
subplots[0, 2].imshow(shape_two_noiseless) | ||
|
||
# Do it with a noise argument now | ||
shape_two = ShapeImage(image_shape, object_noise_level=0.2) | ||
shape_two_noisy = shape_single.combine_objects( | ||
["ellipse", "rectangle"], object_params=[ellipse_params, line_params] | ||
) | ||
|
||
subplots[0, 3].imshow(shape_two_noisy) | ||
|
||
# Read the process with specifiations for astronomy objects | ||
star_instance = {"radius": 100.0, "amplitude": 100.0} | ||
star_params = {"center_x": center - int(center / 2), "center_y": center} | ||
|
||
galaxy_instance = {"radius": 30.0, "amplitude": 200.0, "ellipse": 0.8, "theta": 0.2} | ||
galaxy_params = {"center_x": center, "center_y": center + int(center / 2)} | ||
subplots[1, 0].set_ylabel("Astronomy", labelpad=8.0) | ||
|
||
one_image_sky = SkyImage(image_shape) | ||
one_sky = one_image_sky.combine_objects( | ||
["star"], instance_params=[star_instance], object_params=[star_params] | ||
) | ||
|
||
subplots[1, 0].imshow(one_sky) | ||
|
||
|
||
one_sky_noise = SkyImage(image_shape, object_noise_level=0.4) | ||
one_image_sky_noise = one_sky_noise.combine_objects( | ||
["star"], instance_params=[star_instance], object_params=[star_params] | ||
) | ||
|
||
subplots[1, 1].imshow(one_image_sky_noise) | ||
|
||
one_image_sky = SkyImage(image_shape) | ||
one_sky = one_image_sky.combine_objects( | ||
["star", "galaxy"], | ||
instance_params=[star_instance, galaxy_instance], | ||
object_params=[star_params, galaxy_params], | ||
) | ||
|
||
subplots[1, 2].imshow(one_sky) | ||
|
||
|
||
one_sky_noise = SkyImage(image_shape, object_noise_level=0.4) | ||
one_image_sky_noise = one_sky_noise.combine_objects( | ||
["star", "galaxy"], | ||
instance_params=[star_instance, galaxy_instance], | ||
object_params=[star_params, galaxy_params], | ||
) | ||
|
||
subplots[1, 3].imshow(one_image_sky_noise) | ||
|
||
|
||
one_sky_noise = SkyImage(image_shape, object_noise_level=0.4) | ||
one_image_sky_noise = one_sky_noise.combine_objects( | ||
["star", "galaxy"], | ||
instance_params=[star_instance, galaxy_instance], | ||
object_params=[star_params, galaxy_params], | ||
) | ||
|
||
subplots[1, 3].imshow(one_image_sky_noise) | ||
|
||
# Y axis labels for each row | ||
subplots[0, 0].set_ylabel("Geometry", labelpad=10.0) | ||
|
||
# Remove unnecessary ticks, only put them on the 100 pixel marks | ||
# Flip the images so it starts at 0.,0. | ||
ticks = np.linspace(0, image_shape[0], int(image_shape[0] / 100)) | ||
for plot in subplots.ravel(): | ||
plot.autoscale(tight=True) | ||
plot.set_yticks(ticks.tolist()[::-1]) | ||
plot.invert_yaxis() | ||
plot.set_xticks(ticks) | ||
|
||
# All object titles | ||
subplots[0, 0].set_title("Noiseless Single Object") | ||
subplots[0, 2].set_title("Noiseless Multi-Object") | ||
subplots[0, 1].set_title("Noisy Single Object") | ||
subplots[0, 3].set_title("Noisy Multi-Object") | ||
|
||
# Scale information | ||
fig.supxlabel("pixel") | ||
fig.supylabel("pixel") | ||
|
||
plt.savefig("../example_objects.png") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
from deepbench.physics_object import HamiltonianPendulum, Pendulum | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
|
||
|
||
# Define the number of objects in the plot and the total figure size | ||
fig, subplots = plt.subplots(1, 2, figsize=(int(19 * (3 / 4)), int(7 * 3 / 4))) | ||
|
||
# Set the times to calculate the pendulum position over | ||
# 1 point every second, for 0 to 25 seconds | ||
time = np.array(np.linspace(0, 25, 25)) | ||
|
||
# Produce pendulum object | ||
pendulum = Pendulum( | ||
pendulum_arm_length=10.0, | ||
starting_angle_radians=np.pi / 4, | ||
acceleration_due_to_gravity=9.8, | ||
noise_std_percent={ | ||
"pendulum_arm_length": 0.0, | ||
"starting_angle_radians": 0.1, | ||
"acceleration_due_to_gravity": 0.1, | ||
}, | ||
) | ||
|
||
# Use the noiseless argument to make the pendulum w/o noise | ||
# Plot that against the time and with scatter and line options | ||
pendulum_noiseless = pendulum.create_object(time, noiseless=True) | ||
subplots[0].plot(time, pendulum_noiseless, color="black") | ||
subplots[0].scatter(time, pendulum_noiseless, color="black", label="Noiseless") | ||
|
||
# Use the noiseless=False to do the same with a noiseless pendulum | ||
pendulum_noisy = pendulum.create_object(time, noiseless=False) | ||
subplots[0].plot(time, pendulum_noisy, color="red") | ||
subplots[0].scatter(time, pendulum_noisy, color="red", label="Noisy") | ||
|
||
|
||
# Produce noiseless pendulum object for the H | ||
pendulum = HamiltonianPendulum( | ||
pendulum_arm_length=10.0, | ||
starting_angle_radians=np.pi / 4, | ||
acceleration_due_to_gravity=9.8, | ||
noise_std_percent={ | ||
"pendulum_arm_length": 0.0, | ||
"starting_angle_radians": 0.0, | ||
"acceleration_due_to_gravity": 0.0, | ||
}, | ||
) | ||
|
||
# Cacluate the pendulum positions and engeries | ||
pendulum_data = pendulum.create_object(time) | ||
|
||
# Plot the line and scatterplot versions of the position wrt time | ||
subplots[1].plot(pendulum_data[4], pendulum_data[0], color="black") | ||
subplots[1].scatter( | ||
pendulum_data[4], pendulum_data[0], color="black", label="Noiseless" | ||
) | ||
|
||
# Repeat the process with the noisely pendulum | ||
pendulum = HamiltonianPendulum( | ||
pendulum_arm_length=10.0, | ||
starting_angle_radians=np.pi / 4, | ||
acceleration_due_to_gravity=9.8, | ||
noise_std_percent={ | ||
"pendulum_arm_length": 0.2, | ||
"starting_angle_radians": 0.0, | ||
"acceleration_due_to_gravity": 0.0, | ||
}, | ||
) | ||
|
||
pendulum_data = pendulum.create_object(time) | ||
|
||
subplots[1].plot(pendulum_data[4], pendulum_data[0], color="red") | ||
subplots[1].scatter(pendulum_data[4], pendulum_data[0], color="red", label="Noisy") | ||
|
||
# Set plot labels | ||
subplots[0].set_title("Newtonian") | ||
subplots[1].set_title("Hamiltonian") | ||
|
||
# Set axices labels | ||
for plot in subplots.ravel(): | ||
# plot.set(xticks=[], yticks=[]) | ||
|
||
plot.set_xlabel("Time (s)") | ||
plot.set_ylabel("X Position") | ||
|
||
# Assign legend location | ||
subplots[1].legend(loc="center left", bbox_to_anchor=(1.02, 1)) | ||
|
||
plt.savefig("../pendulums.png") |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.