Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Only display intro (rather than entire article) during listing of blog posts #4662

Merged
merged 1 commit into from
Dec 18, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@ This article covers an approach to handling time-varying ragged hierarchies in a

To help visualize this data, we're going to pretend we are a company that manufactures and rents out eBikes in a ride share application. When we build a bike, we keep track of the serial numbers of the components that make up the bike. Any time something breaks and needs to be replaced, we track the old parts that were removed and the new parts that were installed. We also precisely track the mileage accumulated on each of our bikes. Our primary analytical goal is to be able to report on the expected lifetime of each component, so we can prioritize improving that component and reduce costly maintenance.

<!--truncate-->

## Data model

Obviously, a real bike could have a hundred or more separate components. To keep things simple for this article, let's just consider the bike, the frame, a wheel, the wheel rim, tire, and tube. Our component hierarchy looks like:
Expand Down
Loading