Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed a small typo #4598

Merged
merged 3 commits into from
Dec 6, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion website/docs/terms/data-wrangling.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ The cleaning stage involves using different functions so that the values in your
- Removing appropriate duplicates or nulls you found in the discovery process
- Eliminating unnecessary characters or spaces from values

Certain cleaning steps, like removing rows with null values, are helpful to do at the beginning of the process because removing nulls and duplicates from the start can increase the performance of your downstream models. In the cleaning step, it’s important to follow a standard for your transformations here. This means you should be following a consistent naming convention for your columns (especially for your <Term id="primary-key">primary keys</Term>) and casting to the same timezone and datatypes throughout your models. Examples include making sure all dates are in UTC time rather than source timezone-specific, all string in either lower or upper case, etc.
Certain cleaning steps, like removing rows with null values, are helpful to do at the beginning of the process because removing nulls and duplicates from the start can increase the performance of your downstream models. In the cleaning step, it’s important to follow a standard for your transformations here. This means you should be following a consistent naming convention for your columns (especially for your <Term id="primary-key">primary keys</Term>) and casting to the same timezone and datatypes throughout your models. Examples include making sure all dates are in UTC time rather than source timezone-specific, all strings are in either lower or upper case, etc.

:::tip dbt to the rescue!
If you're struggling to do all the cleaning on your own, remember that dbt packages ([dbt expectations](https://github.com/calogica/dbt-expectations), [dbt_utils](https://hub.getdbt.com/dbt-labs/dbt_utils/latest/), and [re_data](https://www.getre.io/)) and their macros are also available to help you clean up your data.
Expand Down
Loading