Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Elligator2 hash to curve #17

Merged
merged 5 commits into from
Jun 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
264 changes: 264 additions & 0 deletions src/arkworks/elligator2.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,264 @@
//! Elligator2 has been merged upstream, still we're waiting for new version on crates.io (v.0.4.3)
//!
//! Relevant PRs:
//! - Elligator2 hash-to-curve for Twisted Edwards curves: https://github.com/arkworks-rs/algebra/pull/659
//! - Elligator2 hash-to-curve for Bandersnatch: https://github.com/arkworks-rs/algebra/pull/758

use ark_ec::{
hashing::{
// TODO: this looks identical to the one introduced by #659
curve_maps::swu::parity,
map_to_curve_hasher::MapToCurve,
HashToCurveError,
},
twisted_edwards::{Affine, MontCurveConfig, Projective, TECurveConfig},
};
use ark_ff::{Field, One, Zero};
use core::marker::PhantomData;

/// Trait defining the necessary parameters for the Elligator2 hash-to-curve method
/// for twisted edwards curves form of:
/// `b * y² = x³ + a * x² + x`
/// from [\[BHKL13\]], according to [\[HSSWW23\]]
///
/// - [\[BHKL13\]] <http://dx.doi.org/10.1145/2508859.2516734>
/// - [\[HSSWW23\]] <https://datatracker.ietf.org/doc/html/rfc9380>
pub trait Elligator2Config: TECurveConfig + MontCurveConfig {
/// An element of the base field that is not a square root see \[BHKL13, Section 5\].
/// When `BaseField` is a prime field, [\[HSSWW23\]] mandates that `Z` is the
/// non-square with lowest absolute value in the `BaseField` when its elements
/// are represented as [-(q-1)/2, (q-1)/2]
const Z: Self::BaseField;

/// This must be equal to 1/(MontCurveConfig::COEFF_B)^2;
const ONE_OVER_COEFF_B_SQUARE: Self::BaseField;

/// This must be equal to MontCurveConfig::COEFF_A/MontCurveConfig::COEFF_B;
const COEFF_A_OVER_COEFF_B: Self::BaseField;
}

/// Represents the Elligator2 hash-to-curve map defined by `P`.
pub struct Elligator2Map<P: TECurveConfig>(PhantomData<fn() -> P>);

impl<P: Elligator2Config> Elligator2Map<P> {
/// Checks if `P` represents a valid Elligator2 map. Panics otherwise.
fn check_parameters() -> Result<(), HashToCurveError> {
// We assume that the Montgomery curve is correct and as such we do
// not verify the prerequisite for applicability of Elligator2 map to the TECurveConfing.

// Verifying that Z is a non-square
debug_assert!(
!P::Z.legendre().is_qr(),
"Z should be a quadratic non-residue for the Elligator2 map"
);

debug_assert_eq!(
P::ONE_OVER_COEFF_B_SQUARE,
<P as MontCurveConfig>::COEFF_B
.square()
.inverse()
.expect("B coefficient cannot be zero in Montgomery form"),
"ONE_OVER_COEFF_B_SQUARE is not equal to 1/COEFF_B^2 in Montgomery form"
);

debug_assert_eq!(
P::COEFF_A_OVER_COEFF_B,
<P as MontCurveConfig>::COEFF_A / <P as MontCurveConfig>::COEFF_B,
"COEFF_A_OVER_COEFF_B is not equal to COEFF_A/COEFF_B in Montgomery form"
);
Ok(())
}
}

impl<P: Elligator2Config> MapToCurve<Projective<P>> for Elligator2Map<P> {
fn new() -> Result<Self, ark_ec::hashing::HashToCurveError> {
Self::check_parameters()?;
Ok(Elligator2Map(PhantomData))
}

fn map_to_curve(
&self,
element: <Projective<P> as ark_ec::CurveGroup>::BaseField,
) -> Result<<Projective<P> as ark_ec::CurveGroup>::Affine, ark_ec::hashing::HashToCurveError>
{
// 1. x1 = -(J / K) * inv0(1 + Z * u^2)
// 2. If x1 == 0, set x1 = -(J / K)
// 3. gx1 = x1^3 + (J / K) * x1^2 + x1 / K^2
// 4. x2 = -x1 - (J / K)
// 5. gx2 = x2^3 + (J / K) * x2^2 + x2 / K^2
// 6. If is_square(gx1), set x = x1, y = sqrt(gx1) with sgn0(y) == 1.
// 7. Else set x = x2, y = sqrt(gx2) with sgn0(y) == 0.
// 8. s = x * K
// 9. t = y * K
// 10. return (s, t)

// ark a is irtf J
// ark b is irtf k
let k = <P as MontCurveConfig>::COEFF_B;
let j_on_k = P::COEFF_A_OVER_COEFF_B;
let ksq_inv = P::ONE_OVER_COEFF_B_SQUARE;

let den_1 = <P::BaseField as One>::one() + P::Z * element.square();

let x1 = -j_on_k
/ (if den_1.is_zero() {
<P::BaseField as One>::one()
} else {
den_1
});
let x1sq = x1.square();
let x1cb = x1sq * x1;
let gx1 = x1cb + j_on_k * x1sq + x1 * ksq_inv;

let x2 = -x1 - j_on_k;
let x2sq = x2.square();
let x2cb = x2sq * x2;
let gx2 = x2cb + j_on_k * x2sq + x2 * ksq_inv;

let (x, mut y, sgn0) = if gx1.legendre().is_qr() {
(
x1,
gx1.sqrt()
.expect("We have checked that gx1 is a quadratic residue. Q.E.D"),
true,
)
} else {
(
x2,
gx2.sqrt()
.expect("gx2 is a quadratic residue because gx1 is not. Q.E.D"),
false,
)
};

if parity(&y) != sgn0 {
y = -y;
}

let s = x * k;
let t = y * k;

// `(s, t)` is an affine point on the Montgomery curve.
// Ideally, the TECurve would come with a mapping to its Montgomery curve,
// so we could just call that mapping here.
// This is currently not supported in arkworks, so
// we just implement the rational map here from [\[HSSWW23\]] Appendix D

let tv1 = s + <P::BaseField as One>::one();
let tv2 = tv1 * t;
let (v, w) = if tv2.is_zero() {
(<P::BaseField as Zero>::zero(), <P::BaseField as One>::one())
} else {
let tv2_inv = tv2
.inverse()
.expect("None zero element has inverse. Q.E.D.");
let v = tv2_inv * tv1 * s;
let w = tv2_inv * t * (s - <P::BaseField as One>::one());
(v, w)
};

let point_on_curve = Affine::<P>::new_unchecked(v, w);
debug_assert!(
point_on_curve.is_on_curve(),
"Elligator2 mapped to a point off the curve"
);
Ok(point_on_curve)
}
}

#[cfg(test)]
mod tests {
use super::*;
use ark_ec::hashing::{map_to_curve_hasher::MapToCurveBasedHasher, HashToCurve};
use ark_ff::{field_hashers::DefaultFieldHasher, Fp64, MontBackend, MontFp};
use sha2::Sha256;

#[derive(ark_ff::MontConfig)]
#[modulus = "101"]
#[generator = "2"]
pub struct F101Config;
pub type F101 = Fp64<MontBackend<F101Config, 1>>;

#[derive(ark_ff::MontConfig)]
#[modulus = "11"]
#[generator = "2"]
pub struct F11Config;
pub type F11 = Fp64<MontBackend<F11Config, 1>>;

struct TestElligator2MapToCurveConfig;

impl ark_ec::CurveConfig for TestElligator2MapToCurveConfig {
const COFACTOR: &'static [u64] = &[8];
const COFACTOR_INV: F11 = MontFp!("7");

type BaseField = F101;
type ScalarField = F11;
}

/// sage: EnsureValidEdwards(F101,-1,12)
/// sage: Curve_EdwardsToMontgomery(F101, -1, 12)
/// (76, 23)
/// sage: Curve_EdwardsToWeierstrass(F101, -1, 12)
/// (11, 5)
/// sage: EllipticCurve(F101,[11,5])
/// Elliptic Curve defined by y^2 = x^3 + 11*x + 5 over Finite Field of size 101
/// sage: EW = EllipticCurve(F101,[11,5])
/// sage: EW.order().factor()
/// 2^3 * 11
/// sage: EW = EdwardsCurve(F101,-1,12)
/// sage: EW.gens()[0] * 8
/// (5 : 36 : 1)
/// Point_WeierstrassToEdwards(F101, 11, 5, F101(5), F101(36), a_given=-1, d_given=12)
/// (23, 24)
impl TECurveConfig for TestElligator2MapToCurveConfig {
/// COEFF_A = -1
const COEFF_A: F101 = MontFp!("-1");

/// COEFF_D = 12
const COEFF_D: F101 = MontFp!("12");

const GENERATOR: Affine<TestElligator2MapToCurveConfig> =
Affine::<TestElligator2MapToCurveConfig>::new_unchecked(MontFp!("23"), MontFp!("24"));

type MontCurveConfig = TestElligator2MapToCurveConfig;
}

impl MontCurveConfig for TestElligator2MapToCurveConfig {
/// COEFF_A = 76
const COEFF_A: F101 = MontFp!("76");

/// COEFF_B = 23
const COEFF_B: F101 = MontFp!("23");

type TECurveConfig = TestElligator2MapToCurveConfig;
}

/// sage: find_z_ell2(F101)
/// 2
/// sage: F101 = FiniteField(101)
/// sage: 1/F101("23")^2
/// 80
/// sage: F101("76")/F101("23")
/// 56
impl Elligator2Config for TestElligator2MapToCurveConfig {
const Z: F101 = MontFp!("2");
const ONE_OVER_COEFF_B_SQUARE: F101 = MontFp!("80");

const COEFF_A_OVER_COEFF_B: F101 = MontFp!("56");
}

#[test]
fn elligator2_works() {
let hasher = MapToCurveBasedHasher::<
Projective<TestElligator2MapToCurveConfig>,
DefaultFieldHasher<Sha256, 128>,
Elligator2Map<TestElligator2MapToCurveConfig>,
>::new(b"domain")
.unwrap();

let point = hasher
.hash(b"foo")
.expect("fail to hash the string to curve");
assert!(point.is_on_curve(),);
}
}
3 changes: 3 additions & 0 deletions src/arkworks/mod.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
//! Features expected to land into Arkworks at some point in the future

pub mod elligator2;
2 changes: 2 additions & 0 deletions src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,8 @@ pub mod utils;
#[cfg(feature = "ring")]
pub mod ring;

mod arkworks;

#[cfg(test)]
mod testing;

Expand Down
Loading
Loading