-
Notifications
You must be signed in to change notification settings - Fork 71
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #326 from davidusb-geek/davidusb-geek/dev/thermal_…
…model Davidusb geek/dev/thermal model
- Loading branch information
Showing
12 changed files
with
1,264 additions
and
203 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
# Deferrable load thermal model | ||
|
||
EMHASS supports defining a deferrable load as a thermal model. | ||
This is useful to control thermal equipement as: heaters, air conditioners, etc. | ||
The advantage of using this approach is that you will be able to define your desired room temperature jsut as you will do with your real equipmenet thermostat. | ||
Then EMHASS will deliver the operating schedule to maintain that desired temperature while minimizing the energy bill and taking into account the forecasted outdoor temperature. | ||
|
||
A big thanks to @werdnum for proposing this model and the initial code for implementing this. | ||
|
||
## The thermal model | ||
|
||
The thermal model implemented in EMHASS is a linear model represented by the following equation: | ||
|
||
$$ | ||
T_{in}^{pred}[k+1] = T_{in}^{pred}[k] + P_{def}[k]\frac{\alpha_h\Delta t}{P_{def}^{nom}}-(\gamma_c(T_{in}^{pred}[k] - T_{out}^{fcst}[k])) | ||
$$ | ||
|
||
where $k$ is each time instant, $T_{in}^{pred}$ is the indoor predicted temperature, $T_{out}^{fcst}$ is the outdoor forecasted temperature and $P_{def}$ is the deferrable load power. | ||
|
||
In this model we can see two main configuration parameters: | ||
- The heating rate $\alpha_h$ in degrees per hour. | ||
- The cooling constant $\gamma_c$ in degrees per hour per degree of cooling. | ||
|
||
These parameters are defined according to the thermal characteristics of the building/house. | ||
It was reported by @werdnum, that values of $\alpha_h=5.0$ and $\gamma_c=0.1$ were reasonable in his case. | ||
Of course these parameters should be adapted to each use case. This can be done with with history values of the deferrable load operation and the differents temperatures (indoor/outdoor). | ||
|
||
The following diagram tries to represent an example behavior of this model: | ||
|
||
![](./images/thermal_load_diagram.svg) | ||
|
||
## Implementing the model | ||
|
||
To implement this model we need to provide a configuration for the discussed parameters and the input temperatures. You need to pass in the start temperature, the desired room temperature per timestep, and the forecasted outdoor temperature per timestep. | ||
|
||
We will control this by using data passed at runtime. | ||
The first step will be to define a new entry `def_load_config`, this will be used as a dictionary to store any needed special configuration for each deferrable load. | ||
|
||
For example if we have just **two** deferrable loads and the **second** load is a **thermal load** then we will define `def_load_config` as for example: | ||
``` | ||
'def_load_config': { | ||
{}, | ||
{'thermal_config': { | ||
'heating_rate': 5.0, | ||
'cooling_constant': 0.1, | ||
'overshoot_temperature': 24.0, | ||
'start_temperature': 20, | ||
'desired_temperatures': [...] | ||
}} | ||
} | ||
``` | ||
|
||
Here the `desired_temperatures` is a list of float values for each time step. | ||
|
||
Now we also need to define the other needed input, the `outdoor_temperature_forecast`, which is a list of float values. The list of floats for `desired_temperatures` and the list in `outdoor_temperature_forecast` should have proper lengths, if using MPC the length should be at least equal to the prediction horizon. | ||
|
||
Here is an example modified from a working example provided by @werdnum to pass all the needed data at runtime. | ||
This example is given for the following configuration: just one deferrable load (a thermal load), no PV, no battery, an MPC application, pre-defined heating intervals times. | ||
|
||
``` | ||
rest_command: | ||
emhass_forecast: | ||
url: http://localhost:5000/action/naive-mpc-optim | ||
method: post | ||
timeout: 300 | ||
payload: > | ||
{% macro time_to_timestep(time) -%} | ||
{{ (((today_at(time) - now()) / timedelta(minutes=30)) | round(0, 'ceiling')) % 48 }} | ||
{%- endmacro %} | ||
{%- set horizon = (state_attr('sensor.electricity_price_forecast', 'forecasts')|length) -%} | ||
{%- set heated_intervals = [[time_to_timestep("06:30")|int, time_to_timestep("07:30")|int], [time_to_timestep("17:30")|int, time_to_timestep("23:00")|int]] -%} | ||
{ | ||
"prediction_horizon": {{ horizon }}, | ||
"load_cost_forecast": {{ | ||
( | ||
[states('sensor.general_price')|float(0)] | ||
+ state_attr('sensor.electricity_price_forecast', 'forecasts') | ||
|map(attribute='per_kwh') | ||
|list | ||
)[:horizon] | ||
}}, | ||
"pv_power_forecast": [ | ||
{% set comma = joiner(", ") -%} | ||
{%- for _ in range(horizon) %}{{ comma() }}0{% endfor %} | ||
], | ||
"def_load_config": { | ||
"thermal_config": { | ||
"heating_rate": 5.0, | ||
"cooling_constant": 0.1, | ||
"overshoot_temperature": 24.0, | ||
"start_temperature": {{ state_attr("climate.living", "current_temperature") }}, | ||
"heater_desired_temperatures": [ | ||
{%- set comma = joiner(", ") -%} | ||
{%- for i in range(horizon) -%} | ||
{%- set timestep = i -%} | ||
{{ comma() }} | ||
{% for interval in heated_intervals if timestep >= interval[0] and timestep <= interval[1] %} | ||
21 | ||
{%- else -%} | ||
0 | ||
{%- endfor %} | ||
{%- endfor %} | ||
] | ||
} | ||
}, | ||
"outdoor_temperature_forecast": [ | ||
{%- set comma = joiner(", ") -%} | ||
{%- for fc in state_attr('weather.openweathermap', 'forecast') if (fc.datetime|as_datetime) > now() and (fc.datetime|as_datetime) - now() < timedelta(hours=24) -%} | ||
{%- if loop.index0 * 2 < horizon -%} | ||
{{ comma() }}{{ fc.temperature }} | ||
{%- if loop.index0 * 2 + 1 < horizon -%} | ||
{{ comma() }}{{ fc.temperature }} | ||
{%- endif -%} | ||
{%- endif -%} | ||
{%- endfor %} | ||
] | ||
} | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
# -*- coding: utf-8 -*- | ||
import pickle | ||
import random | ||
import numpy as np | ||
import pandas as pd | ||
import pathlib | ||
import plotly.express as px | ||
import plotly.subplots as sp | ||
import plotly.io as pio | ||
pio.renderers.default = 'browser' | ||
pd.options.plotting.backend = "plotly" | ||
|
||
from emhass.retrieve_hass import RetrieveHass | ||
from emhass.optimization import Optimization | ||
from emhass.forecast import Forecast | ||
from emhass.utils import get_root, get_yaml_parse, get_days_list, get_logger | ||
|
||
# the root folder | ||
root = str(get_root(__file__, num_parent=2)) | ||
emhass_conf = {} | ||
emhass_conf['config_path'] = pathlib.Path(root) / 'config_emhass.yaml' | ||
emhass_conf['data_path'] = pathlib.Path(root) / 'data/' | ||
emhass_conf['root_path'] = pathlib.Path(root) | ||
|
||
# create logger | ||
logger, ch = get_logger(__name__, emhass_conf, save_to_file=False) | ||
|
||
if __name__ == '__main__': | ||
get_data_from_file = True | ||
params = None | ||
show_figures = True | ||
template = 'presentation' | ||
|
||
retrieve_hass_conf, optim_conf, plant_conf = get_yaml_parse(emhass_conf, use_secrets=False) | ||
retrieve_hass_conf, optim_conf, plant_conf = \ | ||
retrieve_hass_conf, optim_conf, plant_conf | ||
rh = RetrieveHass(retrieve_hass_conf['hass_url'], retrieve_hass_conf['long_lived_token'], | ||
retrieve_hass_conf['freq'], retrieve_hass_conf['time_zone'], | ||
params, emhass_conf, logger) | ||
if get_data_from_file: | ||
with open(emhass_conf['data_path'] / 'test_df_final.pkl', 'rb') as inp: | ||
rh.df_final, days_list, var_list = pickle.load(inp) | ||
retrieve_hass_conf['var_load'] = str(var_list[0]) | ||
retrieve_hass_conf['var_PV'] = str(var_list[1]) | ||
retrieve_hass_conf['var_interp'] = [retrieve_hass_conf['var_PV'], retrieve_hass_conf['var_load']] | ||
retrieve_hass_conf['var_replace_zero'] = [retrieve_hass_conf['var_PV']] | ||
else: | ||
days_list = get_days_list(retrieve_hass_conf['days_to_retrieve']) | ||
var_list = [retrieve_hass_conf['var_load'], retrieve_hass_conf['var_PV']] | ||
rh.get_data(days_list, var_list, | ||
minimal_response=False, significant_changes_only=False) | ||
rh.prepare_data(retrieve_hass_conf['var_load'], load_negative = retrieve_hass_conf['load_negative'], | ||
set_zero_min = retrieve_hass_conf['set_zero_min'], | ||
var_replace_zero = retrieve_hass_conf['var_replace_zero'], | ||
var_interp = retrieve_hass_conf['var_interp']) | ||
df_input_data = rh.df_final.copy() | ||
|
||
fcst = Forecast(retrieve_hass_conf, optim_conf, plant_conf, | ||
params, emhass_conf, logger, get_data_from_file=get_data_from_file) | ||
df_weather = fcst.get_weather_forecast(method='csv') | ||
P_PV_forecast = fcst.get_power_from_weather(df_weather) | ||
P_load_forecast = fcst.get_load_forecast(method=optim_conf['load_forecast_method']) | ||
df_input_data = pd.concat([P_PV_forecast, P_load_forecast], axis=1) | ||
df_input_data.columns = ['P_PV_forecast', 'P_load_forecast'] | ||
|
||
df_input_data = fcst.get_load_cost_forecast(df_input_data) | ||
df_input_data = fcst.get_prod_price_forecast(df_input_data) | ||
input_data_dict = {'retrieve_hass_conf': retrieve_hass_conf} | ||
|
||
# Set special debug cases | ||
|
||
# Solver configurations | ||
optim_conf.update({'lp_solver': 'PULP_CBC_CMD'}) # set the name of the linear programming solver that will be used. Options are 'PULP_CBC_CMD', 'GLPK_CMD' and 'COIN_CMD'. | ||
optim_conf.update({'lp_solver_path': 'empty'}) # set the path to the LP solver, COIN_CMD default is /usr/bin/cbc | ||
|
||
# Semi continuous and constant values | ||
optim_conf.update({'treat_def_as_semi_cont': [True, False]}) | ||
optim_conf.update({'set_def_constant': [True, False]}) | ||
|
||
# Thermal modeling | ||
df_input_data['outdoor_temperature_forecast'] = [random.normalvariate(10.0, 3.0) for _ in range(48)] | ||
|
||
runtimeparams = { | ||
'def_load_config': [ | ||
{}, | ||
{'thermal_config': { | ||
'heating_rate': 5.0, | ||
'cooling_constant': 0.1, | ||
'overshoot_temperature': 24.0, | ||
'start_temperature': 20, | ||
'desired_temperatures': [21]*48, | ||
} | ||
} | ||
] | ||
} | ||
if 'def_load_config' in runtimeparams: | ||
optim_conf["def_load_config"] = runtimeparams['def_load_config'] | ||
|
||
costfun = 'profit' | ||
opt = Optimization(retrieve_hass_conf, optim_conf, plant_conf, | ||
fcst.var_load_cost, fcst.var_prod_price, | ||
costfun, emhass_conf, logger) | ||
# opt_res_dayahead = opt.perform_dayahead_forecast_optim( | ||
# df_input_data, P_PV_forecast, P_load_forecast) | ||
unit_load_cost = df_input_data[opt.var_load_cost].values # €/kWh | ||
unit_prod_price = df_input_data[opt.var_prod_price].values # €/kWh | ||
opt_res_dayahead = opt.perform_optimization(df_input_data, P_PV_forecast.values.ravel(), | ||
P_load_forecast.values.ravel(), | ||
unit_load_cost, unit_prod_price, debug=True) | ||
|
||
# Let's plot the input data | ||
fig_inputs_dah = df_input_data.plot() | ||
fig_inputs_dah.layout.template = template | ||
fig_inputs_dah.update_yaxes(title_text = "Powers (W) and Costs(EUR)") | ||
fig_inputs_dah.update_xaxes(title_text = "Time") | ||
if show_figures: | ||
fig_inputs_dah.show() | ||
|
||
vars_to_plot = ['P_deferrable0', 'P_deferrable1','P_grid', 'P_PV', 'predicted_temp_heater1', 'target_temp_heater1', 'P_def_start_1', 'P_def_bin2_1'] | ||
if plant_conf['inverter_is_hybrid']: | ||
vars_to_plot = vars_to_plot + ['P_hybrid_inverter'] | ||
if plant_conf['compute_curtailment']: | ||
vars_to_plot = vars_to_plot + ['P_PV_curtailment'] | ||
if optim_conf['set_use_battery']: | ||
vars_to_plot = vars_to_plot + ['P_batt'] + ['SOC_opt'] | ||
fig_res_dah = opt_res_dayahead[vars_to_plot].plot() # 'P_def_start_0', 'P_def_start_1', 'P_def_bin2_0', 'P_def_bin2_1' | ||
fig_res_dah.layout.template = template | ||
fig_res_dah.update_yaxes(title_text = "Powers (W)") | ||
fig_res_dah.update_xaxes(title_text = "Time") | ||
if show_figures: | ||
fig_res_dah.show() | ||
|
||
print("System with: PV, two deferrable loads, dayahead optimization, profit >> total cost function sum: "+\ | ||
str(opt_res_dayahead['cost_profit'].sum())+", Status: "+opt_res_dayahead['optim_status'].unique().item()) | ||
|
||
print(opt_res_dayahead[vars_to_plot]) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.