Skip to content

Commit

Permalink
scrub
Browse files Browse the repository at this point in the history
  • Loading branch information
zhimin-z committed Jun 21, 2023
1 parent c54ade7 commit e449de0
Showing 1 changed file with 1 addition and 3 deletions.
4 changes: 1 addition & 3 deletions docs/chapter6/chapter6.md
Original file line number Diff line number Diff line change
Expand Up @@ -180,6 +180,4 @@ $$
每一次划分结点都会增加一个新的结点,而且每次选择结点进行划分的概率都是相同的,即$p=1/i$,其中$i$为当前的结点数目。
因此,区域$\Omega(x,Z)$在结点数为$i$时被选中进行划分的概率分布满足$\xi_i\sim Bernoulli(p)$,此时我们可以用划分次数$\xi_i$之和来表示$T_m=\sum_{i=1}^k\xi_i$。

由于$T_m$的期望为$\mathbb{E}[T_m]=\sum_{i=1}^k\frac{1}{i}$,根据

因此当$k\rightarrow\infty$时有$\mathbb{E}[T_m]\rightarrow\infty$,因此$T_m\rightarrow\infty$必然依概率成立,从而证明了$Diam(\Omega(x,Z))\rightarrow 0$。
由于$T_m$的期望为$\mathbb{E}[T_m]=\sum_{i=1}^k\frac{1}{i}$,根据调和级数的发散性,易知当$k\rightarrow\infty$时有$\mathbb{E}[T_m]\rightarrow\infty$,因此$T_m\rightarrow\infty$必然依概率成立,从而证明了$Diam(\Omega(x,Z))\rightarrow 0$。

0 comments on commit e449de0

Please sign in to comment.