Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow splitting of CSV file if it is larger than 10MB #154

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
79 changes: 64 additions & 15 deletions src/databricks/labs/blueprint/installation.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,8 @@

__all__ = ["Installation", "MockInstallation", "IllegalState", "NotInstalled", "SerdeError"]

FILE_SIZE_LIMIT: int = 1024 * 1024 * 10


class IllegalState(ValueError):
pass
Expand Down Expand Up @@ -132,6 +134,10 @@ def check_folder(install_folder: str) -> Installation | None:
tasks.append(functools.partial(check_folder, service_principal_folder))
return Threads.strict(f"finding {product} installations", tasks)

@staticmethod
def extension(filename):
return filename.split(".")[-1]

@classmethod
def load_local(cls, type_ref: type[T], file: Path) -> T:
"""Loads a typed file from the local file system."""
Expand Down Expand Up @@ -348,17 +354,25 @@ def _overwrite_content(self, filename: str, as_dict: Json, type_ref: type):

The `as_dict` argument is the dictionary representation of the object that is to be written to the file.
The `type_ref` argument is the type of the object that is being saved."""
converters: dict[str, Callable[[Any, type], bytes]] = {
converters: dict[str, Callable[[Any, type], list[bytes]]] = {
"json": self._dump_json,
"yml": self._dump_yaml,
"csv": self._dump_csv,
}
extension = filename.split(".")[-1]
extension = self.extension(filename)
if extension not in converters:
raise KeyError(f"Unknown extension: {extension}")
logger.debug(f"Converting {type_ref.__name__} into {extension.upper()} format")
raw = converters[extension](as_dict, type_ref)
self.upload(filename, raw)
raws = converters[extension](as_dict, type_ref)
if len(raws) > 1:
for i, raw in enumerate(raws):
self.upload(f"{filename[0:-4]}.{i + 1}.csv", raw)
return
# Check if the file is more than 10MB
if len(raws[0]) > FILE_SIZE_LIMIT:
raise ValueError(f"File size too large: {len(raws[0])} bytes")

self.upload(filename, raws[0])

@staticmethod
def _global_installation(product):
Expand All @@ -377,25 +391,47 @@ def _unmarshal_type(cls, as_dict, filename, type_ref):
as_dict = cls._migrate_file_format(type_ref, expected_version, as_dict, filename)
return cls._unmarshal(as_dict, [], type_ref)

def _load_content(self, filename: str) -> Json:
def _load_content(self, filename: str) -> Json | list[Json]:
"""The `_load_content` method is a private method that is used to load the contents of a file from
WorkspaceFS as a dictionary. This method is called by the `load` method."""
with self._lock:
# TODO: check how to make this fail fast during unit testing, otherwise
# this currently hangs with the real installation class and mocked workspace client
with self._ws.workspace.download(f"{self.install_folder()}/{filename}") as f:
return self._convert_content(filename, f)
try:
with self._ws.workspace.download(f"{self.install_folder()}/{filename}") as f:
return self._convert_content(filename, f)
except NotFound:
# If the file is not found, check if it is a multi-part csv file
if self.extension(filename) != "csv":
raise
current_part = 1
content: list[Json] = []
try:
while True:
with self._ws.workspace.download(
f"{self.install_folder()}/{filename[0:-4]}.{current_part}.csv"
) as f:
converted_content = self._convert_content(filename, f)
# check if converted_content is a list
if isinstance(converted_content, list):
content += converted_content
else:
content.append(converted_content)
except NotFound:
if current_part == 1:
raise
return content

@classmethod
def _convert_content(cls, filename: str, raw: BinaryIO) -> Json:
def _convert_content(cls, filename: str, raw: BinaryIO) -> Json | list[Json]:
"""The `_convert_content` method is a private method that is used to convert the raw bytes of a file to a
dictionary. This method is called by the `_load_content` method."""
converters: dict[str, Callable[[BinaryIO], Any]] = {
"json": json.load,
"yml": cls._load_yaml,
"csv": cls._load_csv,
}
extension = filename.split(".")[-1]
extension = cls.extension(filename)
if extension not in converters:
raise KeyError(f"Unknown extension: {extension}")
try:
Expand Down Expand Up @@ -747,19 +783,19 @@ def _explain_why(type_ref: type, path: list[str], raw: Any) -> str:
return f'{".".join(path)}: not a {type_ref.__name__}: {raw}'

@staticmethod
def _dump_json(as_dict: Json, _: type) -> bytes:
def _dump_json(as_dict: Json, _: type) -> list[bytes]:
"""The `_dump_json` method is a private method that is used to serialize a dictionary to a JSON string. This
method is called by the `save` method."""
return json.dumps(as_dict, indent=2).encode("utf8")
return [json.dumps(as_dict, indent=2).encode("utf8")]

@staticmethod
def _dump_yaml(raw: Json, _: type) -> bytes:
def _dump_yaml(raw: Json, _: type) -> list[bytes]:
"""The `_dump_yaml` method is a private method that is used to serialize a dictionary to a YAML string. This
method is called by the `save` method."""
try:
from yaml import dump # pylint: disable=import-outside-toplevel

return dump(raw).encode("utf8")
return [dump(raw).encode("utf8")]
except ImportError as err:
raise SyntaxError("PyYAML is not installed. Fix: pip install databricks-labs-blueprint[yaml]") from err

Expand All @@ -781,9 +817,10 @@ def _load_yaml(raw: BinaryIO) -> Json:
raise SyntaxError("PyYAML is not installed. Fix: pip install databricks-labs-blueprint[yaml]") from err

@staticmethod
def _dump_csv(raw: list[Json], type_ref: type) -> bytes:
def _dump_csv(raw: list[Json], type_ref: type) -> list[bytes]:
"""The `_dump_csv` method is a private method that is used to serialize a list of dictionaries to a CSV string.
This method is called by the `save` method."""
raws = []
type_args = get_args(type_ref)
if not type_args:
raise SerdeError(f"Writing CSV is only supported for lists. Got {type_ref}")
Expand All @@ -804,9 +841,21 @@ def _dump_csv(raw: list[Json], type_ref: type) -> bytes:
writer = csv.DictWriter(buffer, field_names, dialect="excel")
writer.writeheader()
for as_dict in raw:
# Check if the buffer + the current row is over the file size limit
before_pos = buffer.tell()
writer.writerow(as_dict)
if buffer.tell() > FILE_SIZE_LIMIT:
buffer.seek(before_pos)
buffer.truncate()
raws.append(buffer.getvalue().encode("utf8"))
buffer = io.StringIO()
writer = csv.DictWriter(buffer, field_names, dialect="excel")
writer.writeheader()
writer.writerow(as_dict)

buffer.seek(0)
return buffer.read().encode("utf8")
raws.append(buffer.getvalue().encode("utf8"))
return raws

@staticmethod
def _load_csv(raw: BinaryIO) -> list[Json]:
Expand Down
14 changes: 14 additions & 0 deletions tests/integration/test_installation.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

import pytest
from databricks.sdk.errors import PermissionDenied
from databricks.sdk.service.catalog import TableInfo
from databricks.sdk.service.provisioning import Workspace

from databricks.labs.blueprint.installation import Installation
Expand Down Expand Up @@ -73,6 +74,19 @@ def test_saving_list_of_dataclasses_to_csv(new_installation):
assert len(loaded) == 2


def test_saving_list_of_dataclasses_to_multiple_csvs(new_installation):
tables: list[TableInfo] = []
for i in range(500000):
tables.append(TableInfo(name=f"long_table_name_{i}", schema_name="very_long_schema_name"))
new_installation.save(
tables,
filename="many_tables_test.csv",
)

loaded = new_installation.load(list[Workspace], filename="many_tables_test.csv")
assert len(loaded) == 500000


@pytest.mark.parametrize(
"ext,magic",
[
Expand Down
Loading