-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
329 additions
and
0 deletions.
There are no files selected for viewing
329 changes: 329 additions & 0 deletions
329
...thon2019/Challenge_7_sort_of/Accidents and Lethal Accidents - Geographical Analysis.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,329 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Accidents and Lethal Accidents - Geographical Analysis\n", | ||
"Ori Moisis, Tal Peleg, Aviram Stern, Noam Hershtig & Moran Neuhof" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"toc": true | ||
}, | ||
"source": [ | ||
"<h1>Table of Contents<span class=\"tocSkip\"></span></h1>\n", | ||
"<div class=\"toc\"><ul class=\"toc-item\"><li><span><a href=\"#Accidents-and-Lethal-Accidents---Geographical-Analysis\" data-toc-modified-id=\"Accidents-and-Lethal-Accidents---Geographical-Analysis-1\"><span class=\"toc-item-num\">1 </span>Accidents and Lethal Accidents - Geographical Analysis</a></span><ul class=\"toc-item\"><li><span><a href=\"#Looking-at-lethal-accidents\" data-toc-modified-id=\"Looking-at-lethal-accidents-1.1\"><span class=\"toc-item-num\">1.1 </span>Looking at lethal accidents</a></span><ul class=\"toc-item\"><li><span><a href=\"#Accidents-geographical-distribution---by-year\" data-toc-modified-id=\"Accidents-geographical-distribution---by-year-1.1.1\"><span class=\"toc-item-num\">1.1.1 </span>Accidents geographical distribution - by year</a></span></li><li><span><a href=\"#Accidents-geographical-distribution---by-hour\" data-toc-modified-id=\"Accidents-geographical-distribution---by-hour-1.1.2\"><span class=\"toc-item-num\">1.1.2 </span>Accidents geographical distribution - by hour</a></span></li></ul></li><li><span><a href=\"#Looking-at-all-accidents\" data-toc-modified-id=\"Looking-at-all-accidents-1.2\"><span class=\"toc-item-num\">1.2 </span>Looking at all accidents</a></span><ul class=\"toc-item\"><li><span><a href=\"#Accidents-geographical-distribution---by-year\" data-toc-modified-id=\"Accidents-geographical-distribution---by-year-1.2.1\"><span class=\"toc-item-num\">1.2.1 </span>Accidents geographical distribution - by year</a></span></li><li><span><a href=\"#Accidents-geographical-distribution---by-hour\" data-toc-modified-id=\"Accidents-geographical-distribution---by-hour-1.2.2\"><span class=\"toc-item-num\">1.2.2 </span>Accidents geographical distribution - by hour</a></span></li></ul></li><li><span><a href=\"#Binned-coordinates\" data-toc-modified-id=\"Binned-coordinates-1.3\"><span class=\"toc-item-num\">1.3 </span>Binned coordinates</a></span><ul class=\"toc-item\"><li><span><a href=\"#Binning-coordinated\" data-toc-modified-id=\"Binning-coordinated-1.3.1\"><span class=\"toc-item-num\">1.3.1 </span>Binning coordinated</a></span></li><li><span><a href=\"#Accidents-geographical-distribution---by-year-(binned)\" data-toc-modified-id=\"Accidents-geographical-distribution---by-year-(binned)-1.3.2\"><span class=\"toc-item-num\">1.3.2 </span>Accidents geographical distribution - by year (binned)</a></span></li><li><span><a href=\"#Accidents-geographical-distribution---by-hour-(binned)\" data-toc-modified-id=\"Accidents-geographical-distribution---by-hour-(binned)-1.3.3\"><span class=\"toc-item-num\">1.3.3 </span>Accidents geographical distribution - by hour (binned)</a></span></li></ul></li></ul></li></ul></div>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Imports\n", | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import seaborn as sns\n", | ||
"import pandas as pd\n", | ||
"import os\n", | ||
"import geopandas\n", | ||
"from shapely.geometry import Point\n", | ||
"\n", | ||
"%matplotlib inline" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Load file\n", | ||
"df = pd.read_csv('anyway_tables_csv_updated/involved_markers_hebrew.csv')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"## Preparing coordinates in dataframe\n", | ||
"df['Coordinates'] = list(zip(df.longitude, df.latitude))\n", | ||
"df['Coordinates'] = df['Coordinates'].apply(Point)\n", | ||
"world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Looking at lethal accidents" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Subsetting only lethal accidents\n", | ||
"lethal_df = df[df['accident_severity']==1].reset_index().drop_duplicates('provider_and_id').reset_index()\n", | ||
"lethal_gdf = geopandas.GeoDataFrame(lethal_df, geometry='Coordinates')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Accidents geographical distribution - by year" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for i, year in enumerate(range(2008, 2019)):\n", | ||
" ax = world[world.name == 'Israel'].plot(color='white', edgecolor='black', figsize=(16,9))\n", | ||
" lethal_df_year = lethal_gdf[lethal_gdf['accident_year'] == year]\n", | ||
" lethal_df_year.plot(ax=ax, color='red',alpha=0.3)\n", | ||
" plt.title(year)\n", | ||
" plt.savefig(f\"{year}.png\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Accidents geographical distribution - by hour" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for i, hour in enumerate(range(0, 24)):\n", | ||
" ax = world[world.name == 'Israel'].plot(color='white', edgecolor='black', figsize=(16,9))\n", | ||
" lethal_gdf_hour = lethal_gdf[lethal_gdf['accident_hour'] == hour]\n", | ||
" lethal_gdf_hour.plot(ax=ax, color='red',alpha=0.3)\n", | ||
" plt.title(hour)\n", | ||
" plt.savefig(f\"hour_of_day{hour}.png\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Looking at all accidents" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"gdf = geopandas.GeoDataFrame(df, geometry='Coordinates')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Accidents geographical distribution - by year" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for i, year in enumerate(range(2008, 2019)):\n", | ||
" ax = world[world.name == 'Israel'].plot(color='white', edgecolor='black', figsize=(16,9))\n", | ||
" gdf_year = gdf[gdf['accident_year'] == year]\n", | ||
" gdf_year.plot(ax=ax, color='red',alpha=0.3)\n", | ||
" plt.title(year)\n", | ||
" plt.savefig(f\"all_accidents_year_{year}.png\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Accidents geographical distribution - by hour" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for i, hour in enumerate(range(0, 24)):\n", | ||
" ax = world[world.name == 'Israel'].plot(color='white', edgecolor='black', figsize=(16,9))\n", | ||
" gdf_hour = gdf[gdf['accident_hour'] == hour]\n", | ||
" gdf_hour.plot(ax=ax, color='red',alpha=0.3)\n", | ||
" plt.title(hour)\n", | ||
" plt.savefig(f\"all_accidents_hour_of_day{hour}.png\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Binned coordinates" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Binning coordinated" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Binned distributions\n", | ||
"# Accurate DF (with accuracy filter)\n", | ||
"accurate_df = df[df['location_accuracy'] == 1].reset_index().drop_duplicates('provider_and_id').reset_index()\n", | ||
"\n", | ||
"lat_cut = pd.cut(accurate_df.latitude, np.linspace(min(accurate_df.latitude), max(accurate_df.latitude), 30), right=True).apply(lambda x: x.mid)\n", | ||
"lon_cut = pd.cut(accurate_df.longitude, np.linspace(min(accurate_df.longitude), max(accurate_df.longitude), 20), right=True).apply(lambda x: x.mid)\n", | ||
"\n", | ||
"accurate_df['lon_cut'] = lon_cut\n", | ||
"accurate_df['lat_cut'] = lat_cut\n", | ||
"\n", | ||
"accurate_df['Binned_Coordinates'] = list(zip(accurate_df.lon_cut, accurate_df.lat_cut))\n", | ||
"accurate_df['Binned_Coordinates'] = accurate_df['Binned_Coordinates'].apply(Point)\n", | ||
"# Creating GDF\n", | ||
"accurate_gdf = geopandas.GeoDataFrame(accurate_df, geometry='Binned_Coordinates')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Accidents geographical distribution - by year (binned)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Binned\n", | ||
"for i, year in enumerate(range(2008, 2019)):\n", | ||
" ax = world[world.name == 'Israel'].plot(color='white', edgecolor='black', figsize=(16,9))\n", | ||
" gdf_year = accurate_gdf[accurate_gdf['accident_year'] == year]\n", | ||
" gdf_year.plot(ax=ax, color='red',alpha=0.3)\n", | ||
" plt.title(year)\n", | ||
" plt.savefig(f\"all_accidents_year_{year}.png\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Accidents geographical distribution - by hour (binned)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for i, hour in enumerate(range(0, 24)):\n", | ||
" ax = world[world.name == 'Israel'].plot(color='white', edgecolor='black', figsize=(16,9))\n", | ||
" gdf_hour = accurate_gdf[accurate_gdf['accident_hour'] == hour]\n", | ||
" gdf_hour.plot(ax=ax, color='red',alpha=0.3)\n", | ||
" plt.title(hour)\n", | ||
" plt.savefig(f\"all_accidents_hour_of_day{hour}.png\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"The same can be done for lethal accidents only (by repeating the filter in 1.1)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.8" | ||
}, | ||
"toc": { | ||
"base_numbering": 1, | ||
"nav_menu": {}, | ||
"number_sections": true, | ||
"sideBar": true, | ||
"skip_h1_title": false, | ||
"title_cell": "Table of Contents", | ||
"title_sidebar": "Contents", | ||
"toc_cell": true, | ||
"toc_position": {}, | ||
"toc_section_display": true, | ||
"toc_window_display": false | ||
}, | ||
"varInspector": { | ||
"cols": { | ||
"lenName": 16, | ||
"lenType": 16, | ||
"lenVar": 40 | ||
}, | ||
"kernels_config": { | ||
"python": { | ||
"delete_cmd_postfix": "", | ||
"delete_cmd_prefix": "del ", | ||
"library": "var_list.py", | ||
"varRefreshCmd": "print(var_dic_list())" | ||
}, | ||
"r": { | ||
"delete_cmd_postfix": ") ", | ||
"delete_cmd_prefix": "rm(", | ||
"library": "var_list.r", | ||
"varRefreshCmd": "cat(var_dic_list()) " | ||
} | ||
}, | ||
"types_to_exclude": [ | ||
"module", | ||
"function", | ||
"builtin_function_or_method", | ||
"instance", | ||
"_Feature" | ||
], | ||
"window_display": false | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |