This is an implementation of machine learning classifiers in Python using different algorithms
-
Gaussian Naive Bayes (http://scikit-learn.org/stable/modules/naive_bayes.html)
-
Decision Trees Classifier (http://scikit-learn.org/stable/modules/tree.html#classification)
#To Do
- Decision Trees (http://scikit-learn.org/stable/modules/tree.html):
a) Decision Tree Regressor
- Install Anaconda (https://www.anaconda.com/download)
- Launch Anaconda (Avails Sci-Kit package: http://scikit-learn.org/stable/)
- Launch Jupiter Notebook
- Run your preferred algorithm
Gaussian Naive Bayes classifier accuracy => 0.9414893617021277 (Consistent)
Decision Tree Classifier accuracy => 0.9148936170212766 (Varies)