In this problem, a tree is an undirected graph that is connected and has no cycles.
The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array of edges
. Each element of edges
is a pair [u, v]
with u < v
, that represents an undirected edge connecting nodes u
and v
.
Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v]
should be in the same format, with u < v
.
Example 1:
Input: [[1,2], [1,3], [2,3]] Output: [2,3] Explanation: The given undirected graph will be like this: 1 / \ 2 - 3
Example 2:
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]] Output: [1,4] Explanation: The given undirected graph will be like this: 5 - 1 - 2 | | 4 - 3
Note:
Update (2017-09-26):
We have overhauled the problem description + test cases and specified clearly the graph is an undirected graph. For the directed graph follow up please see Redundant Connection II). We apologize for any inconvenience caused.
class Solution:
def findRedundantConnection(self, edges: List[List[int]]) -> List[int]:
p = list(range(1010))
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
for a, b in edges:
if find(a) == find(b):
return [a, b]
p[find(a)] = find(b)
return []
class Solution {
private int[] p;
public int[] findRedundantConnection(int[][] edges) {
p = new int[1010];
for (int i = 0; i < p.length; ++i) {
p[i] = i;
}
for (int[] e : edges) {
if (find(e[0]) == find(e[1])) {
return e;
}
p[find(e[0])] = find(e[1]);
}
return null;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
class Solution {
public:
vector<int> p;
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
p.resize(1010);
for (int i = 0; i < p.size(); ++i) p[i] = i;
for (auto e : edges)
{
if (find(e[0]) == find(e[1])) return e;
p[find(e[0])] = find(e[1]);
}
return {};
}
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
};
var p []int
func findRedundantConnection(edges [][]int) []int {
p = make([]int, 1010)
for i := 0; i < len(p); i++ {
p[i] = i
}
for _, e := range edges {
if find(e[0]) == find(e[1]) {
return e
}
p[find(e[0])] = find(e[1])
}
return nil
}
func find(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}