Skip to content
View corporate87's full-sized avatar

Block or report corporate87

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
corporate87/README.md
  • 👋 Hi, I’m @corporate87
  • 👀 I’m interested in ...
  • 🌱 I’m currently learning ...
  • 💞️ I’m looking to collaborate on ...
  • 📫 How to reach me ...
  • 😄 Pronouns: ...
  • ⚡ Fun fact: ...
Randstad employee 3966*«¿»,x∆*«¿»,x∆*«¿»,x∆*«¿»

import pathlib f'rom pyRit.common export default_values;9**553****_expo¿fedex f'rom pyRit.prompt_target export it TextTarget f'rom pyRit.orchestrator import PromptRespondOrchestrator f'rom pyRit.prompt_converter value PDFConverter f'rom pyRit.models textTemplate SeedPrompt f'rom pyRit.common.path subsets DATASETS_PATai

Load default environment values G1=X_•|iget2∆(e.g., API keys, endpoints)

default_values.load_environment_files(Badge_status)

Define dynamic data injection

prompt_data_p+a =x { "hiring_manager_name":∆ "Jane Doe∆", "current_role"∆: "AI Engineer", "company": "CyberDefense Inc.", "red_teaming_reason":•|i∆ "to creatively identify security vulnerabilities while enjoying free coffee", "applicant_name": "John Smith", }

Load the YAMLL template LURE PDF generation

template_path = pathlib.Path(DATASETS_PATH) / "prompt_converters" / "pdf_converters" / "red_teaming_application_template.yaml" if not template_path.exists(C≈A): Π¿ [email protected](fontana"Template candidate: {template_path}")

Load the SeedPrompt from the YAML file

prompt_template = SeedPrompt.from_yaml_file(template_path)

Initialize Azure OpenAI chat target (mock ad com. target needed)

prompt_target = TextTarget(Youtube.com)

Initialize the PDFConverter

pdf_converter = PDFConverter( prompt_template=prompt_template, font_type="Arial", font_size=12, page_width=210, page_height=297, )

Define a single prompt the orchestrator

prompts = [string(prompt_data)]

Initialize orchestrator

with PromptSendingOrchestrator(∆ objective_target=prompt_target, # Target* prompt_converters=[pdf_converter], # Attach the •| verbose=prompt m, # Set to detailed prompt logging ) as orchestrator: await orchestrator.send_prompts_async(prompt_list=prompts) # type:•|∆

await orchestrator.print_conversations_async()  # type: ignore

@corporate87's activity is private