Skip to content

Commit

Permalink
Fix build on Coq v8.12
Browse files Browse the repository at this point in the history
  • Loading branch information
Columbus240 committed Sep 16, 2023
1 parent 12dd48f commit 24fee67
Show file tree
Hide file tree
Showing 3 changed files with 17 additions and 12 deletions.
1 change: 1 addition & 0 deletions theories/ZornsLemma/FiniteTypes.v
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
From Coq Require Import
Arith
Description
FunctionalExtensionality
Lia.
Expand Down
10 changes: 3 additions & 7 deletions theories/ZornsLemma/Finite_sets.v
Original file line number Diff line number Diff line change
Expand Up @@ -289,16 +289,12 @@ Proof.
}
replace (fun _ => _) with (Add (fun m => m < n) n).
{ constructor; auto.
intros ?. red in H.
apply Nat.lt_irrefl in H.
auto.
intros ?. red in H. lia.
}
clear IHn.
apply Extensionality_Ensembles; split; intros m Hm.
- inversion Hm; subst; clear Hm.
+ cbv in *.
apply Nat.le_le_succ_r.
assumption.
+ cbv in *. lia.
+ inversion H; subst; clear H.
constructor.
- cbv in *.
Expand Down Expand Up @@ -337,7 +333,7 @@ Proof.
- apply (finite_nat_initial_segment_ens n).
- auto.
- intros ? ? ? ?.
destruct (Nat.eq_dec x y); [left|right]; auto.
destruct (PeanoNat.Nat.eq_dec x y); [left|right]; auto.
- now intros m Hm; red; auto.
Qed.

Expand Down
18 changes: 13 additions & 5 deletions theories/ZornsLemma/ReverseMath/ReverseCSB.v
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,17 @@
Also noteworthy: https://mathoverflow.net/questions/225819/how-strong-is-cantor-bernstein-schr%C3%B6der
*)

From ZornsLemma Require Import FiniteTypes FunctionProperties.
From Coq Require Import FunctionalExtensionality ProofIrrelevanceFacts.
From Coq Require Import PeanoNat ProofIrrelevance.
From Coq Require Import RelationClasses.
From ZornsLemma Require Import
FiniteTypes
FunctionProperties.
From Coq Require Import
FunctionalExtensionality
Lia
PeanoNat
ProofIrrelevance
ProofIrrelevanceFacts.
From Coq Require Import
RelationClasses.

(* Definition 6 of the above paper *)
Definition OmniscientT (O : Type) : Prop :=
Expand Down Expand Up @@ -109,7 +116,8 @@ Proof.
simpl in *. red in H0, H1.
rewrite Nat.ltb_irrefl in *.
symmetry in H0.
apply Nat.ltb_ge in H0, H1.
apply Nat.ltb_ge in H0.
apply Nat.ltb_ge in H1.
apply Nat.le_antisymm; assumption.
Qed.

Expand Down

0 comments on commit 24fee67

Please sign in to comment.