Skip to content

convexsoft/Wireless-Network-Optimization

Repository files navigation

1. Wireless Reliability Fairness Optimization

The following problem is found in Chapter 3 of the monograph Wireless Network Optimization by Perron-Frobenius Theory.

1.1. The Problem Statement

An outage event occurs at the $l$th receiver when the received SINR falls below a given reliability threshold, i.e., $\text{SINR}_l(\mathbf{p})<\beta_l$ for $l=1, \ldots, L$. So we are interested in minimizing the worst-case outage probability to ensure reliability fairness, which is formulated as follows:

$$\text{minimize} \max_l P(\text{SINR}_l(\mathbf{p})<\beta_l)$$

$$\text{subject to}: \mathbf{p} \in \mathcal{P}$$

$$\text{variables}: \mathbf{p} .$$

where $\text{SINR}_l(\mathbf{p})=R_{ll}G_{ll} p_l/(\sum_{j \neq l}R_{lj}G_{lj}p_j+n_{l})$ for all $l$ where $R_{lj}, \forall l, j$ are random variables that model fading, and $\mathbf{p} \in \mathcal{P}$ models general power constraint set, e.g., a single total power constraint.

1.2. Analytical Solution

Under the Rayleigh fading model, the above nonconvex stochastic program can be simplified because the outage probability (please see Kandukuri and Boyd TWC 2002 for more details) of the $l$th receiver can be given analytically by:

$$P(\text{SINR}_l(\mathbf{p})<\beta_l)=1-e^{\frac{-v_l \beta_l}{p_l}} \prod_{j \neq l}(1+\frac{\beta_l F_{l j} p_j}{p_l})^{-1},$$

where

$$F_{l j} = \begin{cases} 0, & l=j, \\ G_{lj} / G_{ll},& i \neq j. \\ \end{cases} $$

$$ \mathbf{v}=(\frac{n_1}{G_{11}}, \cdots, \frac{n_L}{G_{LL}})^{\top}. $$

Next, we give an analytical solution by applying nonnegative matrix theory and nonlinear Perron-Frobenius theory. For illustration, consider the single total power constraint, then the optimal value and solution are, respectively, given as follows:

$$1-e^{-\rho(\mathbf{B}(\mathbf{p}^*)+\frac{1}{\bar{p}} \mathbf{v} \mathbf{1}^{\top})},$$

$$\mathbf{p}^*=\mathbf{x}(\mathbf{Bp}^*+\frac{1}{\bar{p}} \mathbf{v} \mathbf{1}^{\top})),$$

where $\mathbf{x}(\cdot)$ is the right eigenvector corresponding to the Perron-Frobenius eigenvalue $\rho(\cdot)$, and we define

$$B_{l j} = \begin{cases} 0, & l=j, \\ \frac{p_l}{p_j} \log (1+\frac{\beta_l F_{l j} p_j}{p_l}),& l \neq j. \\ \end{cases} $$

Observe that the spectrum of $\mathbf{B}$ and its rank-one perturbation capture the optimality entirely. Interestingly, this nonlinear Perron-Frobenius theory approach solves an open problem in Kandukuri and Boyd TWC 2002 for the interference-limited special case.

1.3. The Algorithm

Using the nonlinear Perron-Frobenius theory, an optimal algorithm is given below to solve the stochastic program:

  1. Update Power $\mathbf{p}(k+1)$:

$$ p_l(k+1)=-\log P(\text{SINR}_1(\mathbf{p}(k))>\beta_l) p_l(k) \quad \forall l . $$

  1. Nomalize Power $\mathbf{p}(k+1)$:

$$\mathbf{P}(k+1) \leftarrow \frac{\mathbf{p}(k+1) \cdot \bar{p}}{\mathbf{1}^{\top} \mathbf{p}(k+1)} \quad \text { if } \quad\mathcal{P}=\lbrace \mathbf{p} \mid \mathbf{1}^{\top} \mathbf{p} \leq \bar{p} \rbrace.$$

$$ \mathbf{P}(k+1) \leftarrow \frac{\mathbf{p}(k+1) \cdot \bar{p}}{\max_{j} p_j(k+1)} \quad \text { if } \quad \mathcal{P}=\lbrace \mathbf{p} \mid p_l\leq \bar{p},\quad \forall l \rbrace.$$

1.4. The MATLAB Code

Below is an example of using our matlab code to solve the stochastic problem with a single total power constraint:\

%======================

G = [3.1929 0.1360 0.2379 0.3; 0.0702 2.8835 0.2436 0.3; 0.1702 0.8835 2.4436 0.3; 0.0693 0.0924 0.3060 2.3];

n = [0.05;0.05;0.05;0.05];

beta = [1;2;2;2];

pmax = 4;

[p,power_evolution]=worst_outage_prob_min(G,n,beta,pmax);

plot(1:1:res_len,power_evolution(:,1),'-o',1:1:res_len,power_evolution(:,2),'-^',1:1:res_len,power_evolution(:,3),'-+',1:1:res_len,power_evolution(:,4),'-*','linewidth',1.5);

legend('User 1','User 2','User 3','User 4');

%======================

2. Max-min Weighted SINR Optimization : Analytical solution and Algorithm

The following problem is found in Chapter 3 of the monograph Wireless Network Optimization by Perron-Frobenius Theory.

2.1. The Problem Statement

Maximizing the minimum weighted signal-to-interference-and-noise radio (SINR) under the total power constraint is formulated as follows :

$$\text{maximize} \min_l\frac{\text{SINR}_l(\mathbf{p})}{\beta_l}$$

$$\text{subject to}: \mathbf{1}^{\top} \mathbf{p} \leq \bar{p}, \mathbf{p}\geq \mathbf{0},$$

$$\text{variables}: \mathbf{p} .$$

where $\text{SINR}_l(\mathbf{p})=G_{ll} p_l/(\sum_{j \neq l}G_{lj}p_j+n_{l})$ for all $l$, and $\boldsymbol{\beta}=\left(\beta_1, \ldots, \beta_L\right)^{\top} \geqslant 0$ is a given weight vector to reflect priority among users (larger weight means higher priority). A total power budget is given by $\bar{p}$.

2.2. Analytical Solution

Let us define the following nonnegative matrix:

$$ \mathbf{B}=\mathbf{F}+(1 / \bar{p}) \mathbf{1 1}^{\top}, $$

and denote

$$ \mathbf{v}=(\frac{n_1}{G_{11}}, \cdots, \frac{n_L}{G_{LL}})^{\top}, $$

$$F_{l j} = \begin{cases} 0, & l=j, \\ G_{lj} / G_{ll}, &i \neq j. \\ \end{cases} $$

The optimal value and solution are given, respectively, by

$$ \gamma^*=\frac{1}{\rho({diag}(\boldsymbol{\beta} \cdot \mathbf{v}) \mathbf{B})}, $$

and

$$ \mathbf{P}^*=\left(P / \mathbf{1}^{\top} \mathbf{x}({diag}(\boldsymbol{\beta} \circ \mathbf{v}) \mathbf{B})\right) \mathbf{x}({diag}(\boldsymbol{\beta} \circ \mathbf{v}) \mathbf{B}), $$

where $\circ$ denotes Schur product and $\mathbf{x}(\cdot)$ denotes the right eigenvector corresponding to the Perron-Frobenius eigenvalue $\rho(\cdot)$.

2.3. A Short Proof Using the Classical Linear Perron-Frobenius Theorem

It can be shown that solving the optimization problem is equivalent to solving the following fixed-point equation:

$$ \frac{1}{\gamma^*} \mathbf{p}^*={diag}(\boldsymbol{\beta} \circ \mathbf{v})\left(\mathbf{F} \mathbf{p}^*+\mathbf{1}\right), \quad \mathbf{1}^{\top} \mathbf{p}^*=\bar{P}. $$

Now, observe that:

$$ \frac{1}{\gamma^*} \mathbf{p}^*={diag}(\boldsymbol{\beta} \circ \mathbf{v})\left(\mathbf{F}+\frac{1}{\bar{P}} \mathbf{1 1}^{\top}\right) \mathbf{p}^*. $$

Therefore the problem can be solved analytically as an eigenvalue problem by the classical linear Perron-Frobenius theorem.

2.4. The MATLAB Code

Below is an example of using our matlab code to solve the problem:

%======================

G = [3.1929 0.1360 0.2379 0.3; 0.0702 2.8835 0.2436 0.3; 0.1702 0.8835 2.4436 0.3; 0.0693 0.0924 0.3060 2.3];

n = [0.05;0.05;0.05;0.05];

beta = [1;2;2;2];

pmax = 4;

[p,power_evolution]=maxmin(G,n,beta,pmax);

plot(1:1:res_len,power_evolution(:,1),'-o',1:1:res_len,power_evolution(:,2),'-^',1:1:res_len,power_evolution(:,3),'-+',1:1:res_len,power_evolution(:,4),'-*','linewidth',1.5);

legend('User 1','User 2','User 3','User 4');

%======================

3. Outer Approximation Algorithm for Sum Rate Maximization Perron-Frobenius Theory.

The following problem is found in Chapter 5 of the monograph Wireless Network Optimization by Perron-Frobenius Theory.

3.1. The Problem Formulation

The weighted sum rate maximization problem in a multiuser Gaussian interference channel subject to affine power constraint can be stated as:

$$ \text{ maximize } \sum_{l=1}^L w_l \log \left(1+\text{SINR}_l(\mathbf{p})\right) $$

$$ \text { subject to } \mathbf{a}_l^{\top} \mathbf{p} \leqslant \bar{p}_l, \quad l=1, \ldots, L, $$

$$ \text { variables: } \mathbf{p},\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad $$

where $\mathbf{w}=(w_1,…,w_L) \geq \mathbf{0}$ is a given probability vector, and $w_l$ is a weight assigned to the $l$th link to reflect priority (a larger weight reflects a higher priority). The power budget constraint set is modeled by the nonnegative vectors $\mathbf{a}_l,l=1,…,L$ and the upper bound $\bar{\mathbf{p}}$.

Let us denote $\gamma$ as the SINR vector of the users, i.e., $\gamma=\left(\gamma_1, \ldots, \gamma_L\right)^{\top}&gt;0$. The weighted sum rate maximization problem is equivalent to the following problem:

$$ \text{ maximize } \sum_{l=1}^L w_l \log (1+\gamma_l) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad $$

$$ \text{ subject to } \rho\left({diag}(\gamma)\left(\mathbf{F}+\left(1 / p_l\right) \mathbf{v a}_l^{\top}\right)\right) \leqslant 1, \quad l=1, \ldots, L, $$

$$ \text{ variables: } \mathbf{p},\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad\quad\quad\quad\quad\quad $$

where $\rho(⋅)$ denotes the Perron-Frobenius eigenvalue function and whose optimal $\gamma$ yields the original optimal $\mathbf{p}$ through a Perron-Frobenius eigenvector relationship. Now, let $\tilde{\mathbf{\gamma}} =\log\mathbf{\gamma}$. Then, the weighted sum rate maximization problem can be further rewritten as:

$$ \text{ maximize } \sum_{l=1}^L w_l \log \left(1+e^{\tilde{\gamma}_l}\right) \quad\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad $$

$$ \text{ subject to } \rho(diag(e^{\tilde{\gamma}})(\mathbf{F}+(1/\bar{p}_l)\mathbf{va}^{\top}))\leq 0,\quad l=1, \ldots, L, $$

$$ \text{ variables: }\tilde{\gamma},\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad $$

which, notably, maximizes a convex objective function over a closed unbounded convex set.

3.2 The MATLAB Code

Our approach is as follows: The feasible region containing the optimal extreme point is first embedded inside a compact polyhedral convex set (the tightest possible that is ensured by fundamental results in nonnegative matrix theory and the Perron-Frobenius theorem). Infeasible regions are then successively removed from this initial polyhedral set. This method generates a nested sequence of polyhedrons approximating the closed unbounded convex set that yields the global optimal solution $\tilde{\gamma}^*$ asymptotically from the exterior. Below is an example of using our MATLAB code to solve the problem:

%======================

L = 2;

G = rand(L)+diag(rand(L,1))*2;

n = ones(L,1);

pmax = 2.*ones(L,1)+2.*rand(L,1);

a = rand(L,L);

w = rand(L,1);

w = w./sum(w);

[k,power,power_evolution]=outer_apprx(G,n,w,a,pmax);

set(gca, 'Fontname', 'Times newman', 'Fontsize', 15);

plot(1:1:k,power_evolution(:,1),'-o',1:1:k,power_evolution(:,2),'-^','linewidth',1.5);

legend('User 1','User 2');

xlim([0 k]);

ylim([min(power)-2 max(power)+4]);

%======================

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages