Skip to content

Commit

Permalink
[core] remove beam search from the core (vllm-project#9105)
Browse files Browse the repository at this point in the history
Signed-off-by: Alvant <[email protected]>
  • Loading branch information
youkaichao authored and Alvant committed Oct 26, 2024
1 parent 38e22b1 commit 8864bee
Show file tree
Hide file tree
Showing 25 changed files with 98 additions and 596 deletions.
6 changes: 0 additions & 6 deletions benchmarks/backend_request_func.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,6 @@ class RequestFuncInput:
output_len: int
model: str
best_of: int = 1
use_beam_search: bool = False
logprobs: Optional[int] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
Expand All @@ -49,7 +48,6 @@ async def async_request_tgi(
assert api_url.endswith("generate_stream")

async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
params = {
"best_of": request_func_input.best_of,
"max_new_tokens": request_func_input.output_len,
Expand Down Expand Up @@ -121,7 +119,6 @@ async def async_request_trt_llm(
assert api_url.endswith("generate_stream")

async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
assert request_func_input.best_of == 1
payload = {
"accumulate_tokens": True,
Expand Down Expand Up @@ -187,7 +184,6 @@ async def async_request_deepspeed_mii(
) -> RequestFuncOutput:
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert request_func_input.best_of == 1
assert not request_func_input.use_beam_search

payload = {
"prompt": request_func_input.prompt,
Expand Down Expand Up @@ -235,7 +231,6 @@ async def async_request_openai_completions(
), "OpenAI Completions API URL must end with 'completions' or 'profile'."

async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
Expand Down Expand Up @@ -317,7 +312,6 @@ async def async_request_openai_chat_completions(
), "OpenAI Chat Completions API URL must end with 'chat/completions'."

async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
content = [{"type": "text", "text": request_func_input.prompt}]
if request_func_input.multi_modal_content:
content.append(request_func_input.multi_modal_content)
Expand Down
3 changes: 1 addition & 2 deletions benchmarks/benchmark_latency.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,9 +51,8 @@ def main(args: argparse.Namespace):

sampling_params = SamplingParams(
n=args.n,
temperature=0.0 if args.use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=args.use_beam_search,
ignore_eos=True,
max_tokens=args.output_len,
)
Expand Down
24 changes: 11 additions & 13 deletions benchmarks/benchmark_prioritization.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,6 @@ def run_vllm(
tensor_parallel_size: int,
seed: int,
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
Expand Down Expand Up @@ -114,9 +113,8 @@ def run_vllm(
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
Expand Down Expand Up @@ -144,15 +142,16 @@ def main(args: argparse.Namespace):
args.output_len)

if args.backend == "vllm":
elapsed_time = run_vllm(
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.gpu_memory_utilization,
args.download_dir)
elapsed_time = run_vllm(requests, args.model, args.tokenizer,
args.quantization, args.tensor_parallel_size,
args.seed, args.n, args.trust_remote_code,
args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching,
args.enable_chunked_prefill,
args.max_num_batched_tokens,
args.gpu_memory_utilization, args.download_dir)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
Expand Down Expand Up @@ -203,7 +202,6 @@ def main(args: argparse.Namespace):
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts",
type=int,
default=200,
Expand Down
7 changes: 0 additions & 7 deletions benchmarks/benchmark_serving.py
Original file line number Diff line number Diff line change
Expand Up @@ -391,7 +391,6 @@ async def benchmark(
input_requests: List[Tuple[str, int, int]],
logprobs: Optional[int],
best_of: int,
use_beam_search: bool,
request_rate: float,
disable_tqdm: bool,
profile: bool,
Expand Down Expand Up @@ -419,7 +418,6 @@ async def benchmark(
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
multi_modal_content=test_mm_content,
ignore_eos=ignore_eos,
)
Expand All @@ -441,7 +439,6 @@ async def benchmark(
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
multi_modal_content=test_mm_content,
)
profile_output = await request_func(request_func_input=profile_input)
Expand All @@ -464,7 +461,6 @@ async def benchmark(
output_len=output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
multi_modal_content=mm_content,
)
tasks.append(
Expand All @@ -483,7 +479,6 @@ async def benchmark(
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
Expand Down Expand Up @@ -679,7 +674,6 @@ def main(args: argparse.Namespace):
input_requests=input_requests,
logprobs=args.logprobs,
best_of=args.best_of,
use_beam_search=args.use_beam_search,
request_rate=args.request_rate,
disable_tqdm=args.disable_tqdm,
profile=args.profile,
Expand All @@ -701,7 +695,6 @@ def main(args: argparse.Namespace):
result_json["model_id"] = model_id
result_json["tokenizer_id"] = tokenizer_id
result_json["best_of"] = args.best_of
result_json["use_beam_search"] = args.use_beam_search
result_json["num_prompts"] = args.num_prompts

# Metadata
Expand Down
29 changes: 9 additions & 20 deletions benchmarks/benchmark_throughput.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,6 @@ def run_vllm(
tensor_parallel_size: int,
seed: int,
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
Expand All @@ -91,7 +90,6 @@ def run_vllm(
download_dir: Optional[str] = None,
load_format: str = EngineArgs.load_format,
disable_async_output_proc: bool = False,
use_new_beam_search_impl: bool = False,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
Expand Down Expand Up @@ -127,19 +125,19 @@ def run_vllm(
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))

if not use_new_beam_search_impl:
use_beam_search = False

if not use_beam_search:
start = time.perf_counter()
llm.generate(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
else:
assert use_beam_search
prompts = [prompt for prompt, _, _ in requests]
# output_len should be the same for all requests.
output_len = requests[0][2]
Expand All @@ -165,7 +163,6 @@ async def run_vllm_async(
tensor_parallel_size: int,
seed: int,
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
Expand Down Expand Up @@ -224,9 +221,8 @@ async def run_vllm_async(
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
Expand All @@ -248,11 +244,9 @@ def run_hf(
model: str,
tokenizer: PreTrainedTokenizerBase,
n: int,
use_beam_search: bool,
max_batch_size: int,
trust_remote_code: bool,
) -> float:
assert not use_beam_search
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
if llm.config.model_type == "llama":
Expand Down Expand Up @@ -284,7 +278,7 @@ def run_hf(
padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=not use_beam_search,
do_sample=True,
num_return_sequences=n,
temperature=1.0,
top_p=1.0,
Expand Down Expand Up @@ -340,7 +334,7 @@ def main(args: argparse.Namespace):
if args.backend == "vllm":
run_args = [
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.tensor_parallel_size, args.seed, args.n,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
Expand All @@ -355,12 +349,11 @@ def main(args: argparse.Namespace):
run_args.append(args.disable_frontend_multiprocessing)
elapsed_time = uvloop.run(run_vllm_async(*run_args))
else:
elapsed_time = run_vllm(*run_args, args.use_new_beam_search_impl)
elapsed_time = run_vllm(*run_args)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.use_beam_search, args.hf_max_batch_size,
args.trust_remote_code)
args.hf_max_batch_size, args.trust_remote_code)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
Expand Down Expand Up @@ -414,8 +407,6 @@ def main(args: argparse.Namespace):
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--use-new-beam-search-impl", action="store_true")
parser.add_argument("--num-prompts",
type=int,
default=1000,
Expand Down Expand Up @@ -570,8 +561,6 @@ def main(args: argparse.Namespace):
raise ValueError("dtype must be auto for MII backend.")
if args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.use_beam_search:
raise ValueError("Beam search is not supported for MII backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.hf_max_batch_size is not None:
Expand Down
3 changes: 0 additions & 3 deletions examples/llm_engine_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,6 @@ def create_test_prompts() -> List[Tuple[str, SamplingParams]]:
temperature=0.8,
top_p=0.95,
frequency_penalty=0.1)),
("It is only with the heart that one can see rightly",
SamplingParams(n=3, best_of=3, use_beam_search=True,
temperature=0.0)),
]


Expand Down
18 changes: 0 additions & 18 deletions examples/multilora_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,15 +43,6 @@ def create_test_prompts(
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora", 1, lora_path)),
(
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]", # noqa: E501
SamplingParams(n=3,
best_of=3,
use_beam_search=True,
temperature=0,
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora", 1, lora_path)),
(
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]", # noqa: E501
SamplingParams(temperature=0.0,
Expand All @@ -60,15 +51,6 @@ def create_test_prompts(
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora2", 2, lora_path)),
(
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]", # noqa: E501
SamplingParams(n=3,
best_of=3,
use_beam_search=True,
temperature=0,
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora", 1, lora_path)),
]


Expand Down
Loading

0 comments on commit 8864bee

Please sign in to comment.