Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enhancing BERT Training: The development of AI features and advanced techniques has been addressed as the next step to be integrated #108

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
104 changes: 104 additions & 0 deletions BERT_Training_Enhanced.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
import argparse
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.cuda.amp import GradScaler, autocast
import torch

from .model import BERT
from .trainer import BERTTrainer
from .dataset import BERTDataset, WordVocab

# Import EarlyStopping if it's from an external module or library
from your_module_name import EarlyStopping # Replace 'your_module_name' with the actual module name

def train():
parser = argparse.ArgumentParser()

parser.add_argument("-c", "--train_dataset", required=True, type=str, help="train dataset for training BERT")
parser.add_argument("-t", "--test_dataset", type=str, default=None, help="test set for evaluating the training set")
parser.add_argument("-v", "--vocab_path", required=True, type=str, help="path to the vocabulary model")
parser.add_argument("-o", "--output_path", required=True, type=str, help="output path for the BERT model")

parser.add_argument("-hs", "--hidden", type=int, default=256, help="hidden size of transformer model")
parser.add_argument("-l", "--layers", type=int, default=8, help="number of layers")
parser.add_argument("-a", "--attn_heads", type=int, default=8, help="number of attention heads")
parser.add_argument("-s", "--seq_len", type=int, default=20, help="maximum sequence length")

parser.add_argument("-b", "--batch_size", type=int, default=64, help="batch size")
parser.add_argument("-e", "--epochs", type=int, default=10, help="number of epochs")
parser.add_argument("-w", "--num_workers", type=int, default=5, help="number of dataloader workers")

parser.add_argument("--with_cuda", type=bool, default=True, help="train with CUDA: true or false")
parser.add_argument("--log_freq", type=int, default=10, help="print loss every n iterations")
parser.add_argument("--corpus_lines", type=int, default=None, help="total number of lines in the corpus")
parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device IDs")
parser.add_argument("--on_memory", type=bool, default=True, help="load data on memory: true or false")

parser.add_argument("--lr", type=float, default=1e-3, help="learning rate of Adam")
parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight decay for Adam")
parser.add_argument("--adam_beta1", type=float, default=0.9, help="Adam's first beta value")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="Adam's second beta value")

# New features
parser.add_argument("--dynamic_lr", type=bool, default=True, help="use dynamic learning rate adjustment")
parser.add_argument("--early_stopping", type=bool, default=True, help="enable early stopping")
parser.add_argument("--patience", type=int, default=3, help="patience for early stopping")
parser.add_argument("--mixed_precision", type=bool, default=True, help="use mixed precision training")
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="steps for gradient accumulation")
parser.add_argument("--data_augmentation", type=bool, default=False, help="apply data augmentation techniques")

args = parser.parse_args()

print("Loading Vocab", args.vocab_path)
vocab = WordVocab.load_vocab(args.vocab_path)
print("Vocab Size: ", len(vocab))

print("Loading Train Dataset", args.train_dataset)
train_dataset = BERTDataset(args.train_dataset, vocab, seq_len=args.seq_len,
corpus_lines=args.corpus_lines, on_memory=args.on_memory,
data_augmentation=args.data_augmentation)

print("Loading Test Dataset", args.test_dataset)
test_dataset = BERTDataset(args.test_dataset, vocab, seq_len=args.seq_len, on_memory=args.on_memory) \
if args.test_dataset is not None else None

print("Creating Dataloader")
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \
if test_dataset is not None else None

print("Building BERT model")
bert = BERT(len(vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads)

print("Creating BERT Trainer")
trainer = BERTTrainer(bert, len(vocab), train_dataloader=train_data_loader, test_dataloader=test_data_loader,
lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay,
with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq,
mixed_precision=args.mixed_precision, grad_accumulation_steps=args.grad_accumulation_steps)

# Dynamic Learning Rate Adjustment
if args.dynamic_lr:
scheduler = ReduceLROnPlateau(trainer.optimizer, mode='min', factor=0.5, patience=args.patience, verbose=True)

# Early Stopping
early_stopping = None
if args.early_stopping:
early_stopping = EarlyStopping(patience=args.patience, verbose=True)

print("Training Start")
for epoch in range(args.epochs):
trainer.train(epoch)

if test_data_loader is not None:
test_loss = trainer.test(epoch)

if args.dynamic_lr:
scheduler.step(test_loss)

if early_stopping is not None:
early_stopping(test_loss, trainer.model)
if early_stopping.early_stop:
print("Early stopping")
break

trainer.save(epoch, args.output_path)