Skip to content

codekansas/ml-project-template

Repository files navigation

ML Project Template

Welcome! To get started, clone this repository and run the initialize script:

./initialize

About

This is a starter template for machine learning projects in PyTorch.

The core of this library lives over here.

Run a command

Train a ResNet18 model on CIFAR10:

runml train configs/image_demo.yaml

Train an RL PPO model on BipedalWalker:

runml train configs/rl_demo.yaml

Launch a Slurm job (requires setting the SLURM_PARTITION environment variable):

runml launch configs/image_demo.yaml launcher.name=slurm launcher.num_nodes=1 launcher.gpus_per_node=1

Architecture

A new project is broken down into five parts:

  1. Task: Defines the dataset and calls the model on a sample. Similar to a LightningModule.
  2. Model: Just a PyTorch nn.Module
  3. Trainer: Defines the main training loop, and optionally how to distribute training when using multiple GPUs
  4. Optimizer: Just a PyTorch optim.Optimizer
  5. LR Scheduler: Just a PyTorch optim.LRScheduler

Most projects should just have to implement the Task and Model, and use a default trainer, optimizer and learning rate scheduler. Running the training command above will log the location of each component.

New tasks, models, trainers, optimizers and learning rate schedulers are added using the same API, although each should implement different things. For example, to create a new model, make a new file under ml/models and add the following code:

from dataclasses import dataclass

from ml.core.config import conf_field
from ml.core.registry import register_model
from ml.models.base import BaseModel, BaseModelConfig


@dataclass
class NewModelConfig(BaseModelConfig):
  some_param: int = conf_field(10)


@register_model("new_model", NewModelConfig)
class NewModel(BaseModel[NewModelConfig]):
  def forward(self, x):
    return x + self.config.some_param

The framework will automatically search in all of the files in ml/models to populate the model registry. In your config file, you can then reference the registered model using whatever key you chose:

model:
  name: new_model

Similar APIs exist for tasks, trainers, optimizers and learning rate schedulers. Try running the demo config to get a sense for how each of these fit together.

Features

This repository implements some features which I find useful when starting ML projects.

C++ Extensions

This template makes it easy to add custom C++ extensions to your PyTorch project. The demo includes a custom TorchScript-compatible nucleus sampling function, although more complex extensions are possible.

Github Actions

This template automatically runs black, isort, pylint and mypy against your repository as a Github action. You can enable push-blocking until these tests pass.

Lots of Timers

The training loop is pretty well optimized, but sometimes you can do stupid things when implementing a task that impact your performance. This adds a lot of timers which make it easy to spot likely training slowdowns, or you can run the full profiler if you want a more detailed breakdown.

Compiled models

By default, models are run using torch.compile. To disable this behavior and use eager mode execution, set TORCH_COMPILE=0. If you try to launch a Slurm job with this flag set, it will show a warning.

About

Empty template repository for ML projects

Topics

Resources

License

Stars

Watchers

Forks