-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2b4e9fc
commit 537a7e0
Showing
47 changed files
with
23,863 additions
and
2,901 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import time\n", | ||
"from numpy import genfromtxt" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"- - - 0 - - - \n", | ||
"load time: 0.7495675086975098\n", | ||
"- - - 1 - - - \n", | ||
"load time: 0.8139548301696777\n", | ||
"- - - 2 - - - \n", | ||
"load time: 0.855985164642334\n", | ||
"- - - 3 - - - \n", | ||
"load time: 0.9320805072784424\n", | ||
"- - - 4 - - - \n", | ||
"load time: 1.012078046798706\n", | ||
"- - - 5 - - - \n", | ||
"load time: 1.1780333518981934\n", | ||
"- - - 6 - - - \n", | ||
"load time: 1.167330026626587\n", | ||
"- - - 7 - - - \n", | ||
"load time: 1.2551357746124268\n", | ||
"- - - 8 - - - \n", | ||
"load time: 1.4044301509857178\n", | ||
"- - - 9 - - - \n", | ||
"load time: 1.4435057640075684\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"batch_size = 100000\n", | ||
"TOTAL_SIZE = 100000\n", | ||
"for i in range(10):\n", | ||
" s_time = time.time()\n", | ||
" dataset = genfromtxt('C:/Users/Cloud/iCloudDrive/HUAWEI_LKD/Dataset/Legacy/data/TPCH_12M_8Field.csv', delimiter=',',\n", | ||
" skip_header = i*batch_size, max_rows = batch_size)\n", | ||
" e_time = time.time()\n", | ||
" print('- - -',i,'- - - ')\n", | ||
" print('load time: ', e_time - s_time)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# conclusion: numpy method is not good" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"process time: 1.2433969974517822\n", | ||
"1000000\n", | ||
"process time: 1.279536247253418\n", | ||
"1000000\n", | ||
"process time: 1.2443997859954834\n", | ||
"1000000\n", | ||
"process time: 1.2444000244140625\n", | ||
"1000000\n", | ||
"process time: 1.1829118728637695\n", | ||
"1000000\n", | ||
"process time: 1.1985292434692383\n", | ||
"1000000\n", | ||
"process time: 1.2190296649932861\n", | ||
"1000000\n", | ||
"process time: 1.2278022766113281\n", | ||
"1000000\n", | ||
"process time: 1.246352195739746\n", | ||
"1000000\n", | ||
"process time: 1.2473280429840088\n", | ||
"1000000\n", | ||
"process time: 1.2580626010894775\n", | ||
"1000000\n", | ||
"process time: 1.1985280513763428\n", | ||
"997995\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"last_time = time.time()\n", | ||
"for chunk_df in pd.read_csv('C:/Users/Cloud/iCloudDrive/HUAWEI_LKD/Dataset/Legacy/data/TPCH_12M_8Field.csv', chunksize=1000000):\n", | ||
" current_time = time.time()\n", | ||
" print('process time: ',current_time - last_time)\n", | ||
" print(len(chunk_df))\n", | ||
" last_time = current_time" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# conclusion: pandas method for chunk processing is acceptable" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"class HistManager:\n", | ||
" \n", | ||
" def __init__(self, m, n):\n", | ||
" self.query_hist\n", | ||
" self.query_index_hist\n", | ||
" \n", | ||
" def " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"# new kdnode format: [dims, l1,l2...ln,u1,u2,...,un, id, pid, cid1, cid2]\n", | ||
"class PartitionLayout:\n", | ||
" \n", | ||
" def __init__(self):\n", | ||
" self.idx = None # used to index the partitions\n", | ||
" self.kdnodes = {} # id : partition dictionary\n", | ||
" \n", | ||
" def insert_kdnode(self, kdnode, kid):\n", | ||
" pass\n", | ||
" \n", | ||
" def delete_kdnode(self, kdnode, kid):\n", | ||
" pass" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
161 changes: 161 additions & 0 deletions
161
.ipynb_checkpoints/IncrementalPredictionLSTM(Abandoned)-checkpoint.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"1.5.1\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import torch\n", | ||
"print(torch.__version__)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# LSTM\n", | ||
"rnn = nn.LSTM(10, 20, 2) # number of expected features in the input x, number of features in the hidden state h, Number of recurrent layers\n", | ||
"input = torch.randn(5, 3, 10) # sequence length, batch, input size (features)\n", | ||
"h0 = torch.randn(2, 3, 20) # num_layers * num_directions, batch, hidden_size\n", | ||
"c0 = torch.randn(2, 3, 20) # num_layers * num_directions, batch, hidden_size\n", | ||
"output, (hn, cn) = rnn(input, (h0, c0)) # output: seq_len, batch, num_directions * hidden_size" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"tensor([1., 1., 1., 1., 1.])\n", | ||
"[1. 1. 1. 1. 1.]\n", | ||
"tensor([2., 2., 2., 2., 2.])\n", | ||
"[2. 2. 2. 2. 2.]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# convert torch to np\n", | ||
"a = torch.ones(5)\n", | ||
"print(a)\n", | ||
"b = a.numpy()\n", | ||
"print(b)\n", | ||
"a.add_(1)\n", | ||
"print(a)\n", | ||
"print(b)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[1. 1. 1. 1. 1.]\n", | ||
"tensor([1., 1., 1., 1., 1.], dtype=torch.float64)\n", | ||
"[2. 2. 2. 2. 2.]\n", | ||
"tensor([2., 2., 2., 2., 2.], dtype=torch.float64)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# convert np to torch\n", | ||
"a = np.ones(5)\n", | ||
"b = torch.from_numpy(a)\n", | ||
"print(a)\n", | ||
"print(b)\n", | ||
"np.add(a, 1, out=a)\n", | ||
"print(a)\n", | ||
"print(b)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# using GPU\n", | ||
"if torch.cuda.is_available():\n", | ||
" device = torch.device(\"cuda\") # a CUDA device object\n", | ||
" y = torch.ones_like(x, device=device) # directly create a tensor on GPU\n", | ||
" x = x.to(device) # or just use strings ``.to(\"cuda\")``\n", | ||
" z = x + y\n", | ||
" print(z)\n", | ||
" print(z.to(\"cpu\", torch.double))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"True\n", | ||
"Using device: cuda\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print(torch.cuda.is_available())\n", | ||
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", | ||
"print('Using device:', device)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.