Skip to content

Commit

Permalink
Add more verbose versions of clockTicks (#10)
Browse files Browse the repository at this point in the history
Can be used to supply simulators such as Verilator with accurate timing
information, which it in turn can use to produce accurate VCDs.
  • Loading branch information
martijnbastiaan authored Jan 25, 2024
1 parent e79e808 commit 19897d8
Show file tree
Hide file tree
Showing 6 changed files with 621 additions and 1 deletion.
7 changes: 6 additions & 1 deletion .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -163,6 +163,11 @@ jobs:
- name: Extract VexRiscv Integration Tests
run: |
tar -x -f vexriscv-test-binaries.tar
- name: Run unittests
- name: Run `clash-vexriscv` unittests
run: |
cabal run clash-vexriscv:unittests
- name: Run `clash-vexriscv-sim` unittests
run: |
cabal run clash-vexriscv-sim:unittests
22 changes: 22 additions & 0 deletions clash-vexriscv/clash-vexriscv.cabal
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,7 @@ library
default-language: Haskell2010
exposed-modules:
VexRiscv
VexRiscv.ClockTicks
VexRiscv.FFI
VexRiscv.TH
build-depends:
Expand All @@ -118,3 +119,24 @@ library
Glob,
extra-libraries: VexRiscvFFI, stdc++
include-dirs: src/

test-suite unittests
import: common-options
hs-source-dirs: tests/unittests
type: exitcode-stdio-1.0
main-is: main.hs
ghc-options: -Wall -Wcompat -threaded -rtsopts
other-modules:
Tests.Extra
Tests.VexRiscv.ClockTicks
build-depends:
HUnit,
base,
clash-vexriscv,
bytestring,
hedgehog >= 1.0 && < 1.1,
tasty >= 1.4 && < 1.5,
tasty-hedgehog >= 1.2 && < 1.3,
tasty-hunit,
tasty-th,
template-haskell,
283 changes: 283 additions & 0 deletions clash-vexriscv/src/VexRiscv/ClockTicks.hs
Original file line number Diff line number Diff line change
@@ -0,0 +1,283 @@
-- SPDX-FileCopyrightText: 2024 Google LLC
--
-- SPDX-License-Identifier: Apache-2.0

{-# LANGUAGE NamedFieldPuns #-}

-- | Utilities dealing with clock ticks and edges in Clash.
--
-- TODO: Figure out whether we want to upstream as is, or whether we want to
-- generalize to /N/ clocks first.
module VexRiscv.ClockTicks
( ClockEdgeAB(..)
, clockTicksAbsolute
, clockTicksRelative
, clockEdgesAbsolute
, clockEdgesRelative
) where

import Prelude

import Data.Coerce (coerce)
import Data.Int (Int64)
import Data.List (mapAccumL)
import Data.Ord ()

import Clash.Promoted.Nat (snatToNum)
import Clash.Signal
( ActiveEdge(..), KnownDomain, Clock, SDomainConfiguration(..), knownDomain
, SActiveEdge(..), activeEdge
)
import Clash.Signal.Internal (Signal((:-)), ClockAB(..), Femtoseconds(..), Clock(..))

-- | Given two clocks, produce a list of clock ticks indicating which clock
-- (or both) ticked. Can be used in components handling multiple clocks, such
-- as @unsafeSynchronizer@ or dual clock FIFOs. In contrast to 'clockTicks',
-- this version also produces the absolute time at which the tick happened.
--
-- If your primitive does not care about coincided clock edges, it should - by
-- convention - replace it by @ClockB:ClockA:@.
--
-- Returned time is in /femtoseconds/.
clockTicksAbsolute ::
(KnownDomain domA, KnownDomain domB) =>
Clock domA ->
Clock domB ->
[(Int64, ClockAB)]
clockTicksAbsolute clkA clkB =
clockTicksEitherAbsolute (toEither clkA) (toEither clkB)

-- | Given two clocks, produce a list of clock ticks indicating which clock
-- (or both) ticked. Can be used in components handling multiple clocks, such
-- as @unsafeSynchronizer@ or dual clock FIFOs. In contrast to 'clockTicks',
-- this version also produces the time since the last tick. Note that the first
-- "time since last tick" is always zero.
--
-- If your primitive does not care about coincided clock edges, it should - by
-- convention - replace it by @ClockB:ClockA:@.
--
-- Returned time is in /femtoseconds/.
clockTicksRelative ::
(KnownDomain domA, KnownDomain domB) =>
Clock domA ->
Clock domB ->
[(Int64, ClockAB)]
clockTicksRelative clkA clkB =
clockTicksEitherRelative (toEither clkA) (toEither clkB)

-- | Given two clocks, produce a list of clock ticks indicating which clock
-- (or both) ticked. Can be used in components handling multiple clocks, such
-- as @unsafeSynchronizer@ or dual clock FIFOs.
--
-- If your primitive does not care about coincided clock edges, it should - by
-- convention - replace it by @ClockEdgeB edgeB : ClockEdgeA edgeA:@.
--
-- Returned time is in /femtoseconds/.
clockEdgesAbsolute ::
forall domA domB .
(KnownDomain domA, KnownDomain domB) =>
Clock domA ->
Clock domB ->
[(Int64, ClockEdgeAB)]
clockEdgesAbsolute clkA clkB =
clockEdgesEitherAbsolute
(toActiveEdge (activeEdge @domA)) (toActiveEdge (activeEdge @domB))
(toEither clkA) (toEither clkB)

-- | Given two clocks, produce a list of clock ticks indicating which clock
-- (or both) ticked. Can be used in components handling multiple clocks, such
-- as @unsafeSynchronizer@ or dual clock FIFOs.
--
-- If your primitive does not care about coincided clock edges, it should - by
-- convention - replace it by @ClockEdgeB edgeB : ClockEdgeA edgeA:@.
--
-- Returned time is in /femtoseconds/.
clockEdgesRelative ::
forall domA domB .
(KnownDomain domA, KnownDomain domB) =>
Clock domA ->
Clock domB ->
[(Int64, ClockEdgeAB)]
clockEdgesRelative clkA clkB =
clockEdgesEitherRelative
(toActiveEdge (activeEdge @domA)) (toActiveEdge (activeEdge @domB))
(toEither clkA) (toEither clkB)

-- | GADT version of 'ActiveEdge' to 'ActiveEdge' conversion
toActiveEdge :: SActiveEdge edge -> ActiveEdge
toActiveEdge SRising = Rising
toActiveEdge SFalling = Falling

toEither ::
forall dom.
KnownDomain dom =>
Clock dom ->
Either Int64 (Signal dom Int64)
toEither (Clock _ maybePeriods)
| Just periods <- maybePeriods =
Right (unFemtosecondsSignal periods)
| SDomainConfiguration{sPeriod} <- knownDomain @dom =
-- Convert to femtoseconds - dynamic clocks use them
Left (1000 * snatToNum sPeriod)
where
-- Coerce whole signal instead of `fmap coerce` to prevent useless constructor
-- packing and unpacking.
unFemtosecondsSignal :: Signal dom Femtoseconds -> Signal dom Int64
unFemtosecondsSignal = coerce

-- | Given two clock periods, produce a list of clock ticks indicating which clock
-- (or both) ticked. Can be used in components handling multiple clocks, such
-- as @unsafeSynchronizer@ or dual clock FIFOs. In contrast to 'clockTicksEither',
-- this version also produces the absolute time at which the event happened.
--
-- If your primitive does not care about coincided clock edges, it should - by
-- convention - replace it by @ClockB:ClockA:@.
clockTicksEitherAbsolute ::
Either Int64 (Signal domA Int64) ->
Either Int64 (Signal domB Int64) ->
[(Int64, ClockAB)]
clockTicksEitherAbsolute clkA clkB =
case (clkA, clkB) of
(Left tA, Left tB) | tA == tB -> zip (iterate (+tA) 0) (repeat ClockAB)
(Left tA, Left tB) -> goStatic 0 0 tA tB
(Right tA, Right tB) -> goDynamic 0 0 tA tB
(Left tA, Right tB) -> clockTicksEitherAbsolute (Right (pure tA)) (Right tB)
(Right tA, Left tB) -> clockTicksEitherAbsolute (Right tA) (Right (pure tB))
where
goStatic :: Int64 -> Int64 -> Int64 -> Int64 -> [(Int64, ClockAB)]
goStatic absTimeA absTimeB tA tB =
case compare absTimeA absTimeB of
LT -> (absTimeA, ClockA) : goStatic (absTimeA + tA) absTimeB tA tB
EQ -> (absTimeA, ClockAB) : goStatic (absTimeA + tA) (absTimeB + tB) tA tB
GT -> (absTimeB, ClockB) : goStatic absTimeA (absTimeB + tB) tA tB

goDynamic :: Int64 -> Int64 -> Signal domA Int64 -> Signal domB Int64 -> [(Int64, ClockAB)]
goDynamic absTimeA absTimeB tsA@(~(tA :- tsA0)) tsB@(~(tB :- tsB0)) =
-- Even though we lazily match on the signal's constructor, this shouldn't
-- build up a significant chain of chunks as 'absTimeX' gets evaluated
-- every iteration.
case compare absTimeA absTimeB of
LT -> (absTimeA, ClockA) : goDynamic (absTimeA + tA) absTimeB tsA0 tsB
EQ -> (absTimeA, ClockAB) : goDynamic (absTimeA + tA) (absTimeB + tB) tsA0 tsB0
GT -> (absTimeB, ClockB) : goDynamic absTimeA (absTimeB + tB) tsA tsB0

-- | Given two clock periods, produce a list of clock ticks indicating which clock
-- (or both) ticked. Can be used in components handling multiple clocks, such
-- as @unsafeSynchronizer@ or dual clock FIFOs. In contrast to 'clockTicksEither',
-- this version also produces the time since the last event.
--
-- If your primitive does not care about coincided clock edges, it should - by
-- convention - replace it by @ClockB:ClockA:@.
clockTicksEitherRelative ::
Either Int64 (Signal domA Int64) ->
Either Int64 (Signal domB Int64) ->
[(Int64, ClockAB)]
clockTicksEitherRelative clkA clkB = zip relativeTimestamps ticks
where
relativeTimestamps = 0 : zipWith (-) (tail timestamps) timestamps
(timestamps, ticks) = unzip (clockTicksEitherAbsolute clkA clkB)

-- | Flip edge from rising to falling, and vice versa
oppositeEdge :: ActiveEdge -> ActiveEdge
oppositeEdge Rising = Falling
oppositeEdge Falling = Rising

data ClockEdgeAB
= ClockEdgeA !ActiveEdge
| ClockEdgeB !ActiveEdge
| ClockEdgeAB !ActiveEdge !ActiveEdge
deriving (Show, Eq)

-- | Given two clock periods, produce a list of clock ticks indicating which clock
-- (or both) ticked. Can be used in components handling multiple clocks, such
-- as @unsafeSynchronizer@ or dual clock FIFOs. In contrast to 'clockTicksEither',
-- this version also produces the absolute time at which the event happened.
--
-- If your primitive does not care about coincided clock edges, it should - by
-- convention - replace it by @ClockEdgeB edgeB : ClockEdgeA edgeA:@.
clockEdgesEitherAbsolute ::
ActiveEdge ->
-- ^ First active edge for clock A
ActiveEdge ->
-- ^ First active edge for clock B
Either Int64 (Signal domA Int64) ->
-- ^ Clock periods for clock A
Either Int64 (Signal domB Int64) ->
-- ^ Clock periods for clock B
[(Int64, ClockEdgeAB)]
clockEdgesEitherAbsolute firstEdgeA firstEdgeB clkA clkB =
case (clkA, clkB) of
(Left tA, Left tB) | tA == tB -> goSame (halve tA)
(Left tA, Left tB) -> goStatic 0 0 firstEdgeA firstEdgeB (halve tA) (halve tB)
(Right tA, Right tB) -> goDynamic 0 0 firstEdgeA firstEdgeB (halves tA) (halves tB)
(Left tA, Right tB) ->
clockEdgesEitherAbsolute firstEdgeA firstEdgeB (Right (pure tA)) (Right tB)
(Right tA, Left tB) ->
clockEdgesEitherAbsolute firstEdgeA firstEdgeB (Right tA) (Right (pure tB))
where
halves = go . fmap halve
where
go ((t0, t1) :- ts) = t0 :- t1 :- go ts

halve t =
( t `div` 2
, t - (t `div` 2)
)

goSame :: (Int64, Int64) -> [(Int64, ClockEdgeAB)]
goSame (t0, t1) =
zip
(snd $ mapAccumL (\acc t -> (acc + t, acc)) 0 (cycle [t0, t1]))
(cycle [ ClockEdgeAB firstEdgeA firstEdgeB
, ClockEdgeAB (oppositeEdge firstEdgeA) (oppositeEdge firstEdgeB)
])

goStatic ::
Int64 -> Int64 ->
ActiveEdge -> ActiveEdge ->
(Int64, Int64) -> (Int64, Int64) ->
[(Int64, ClockEdgeAB)]
goStatic absTimeA absTimeB !edgeA !edgeB (tA0, tA1) (tB0, tB1) =
case compare absTimeA absTimeB of
-- XXX: Sorry for breaking the 80/90 limit. I have no idea how to break this
-- over multiple lines without sacrificing readability.
LT -> (absTimeA, ClockEdgeA edgeA) : goStatic (absTimeA + tA0) absTimeB (oppositeEdge edgeA) edgeB (tA1, tA0) (tB0, tB1)
EQ -> (absTimeA, ClockEdgeAB edgeA edgeB) : goStatic (absTimeA + tA0) (absTimeB + tB0) (oppositeEdge edgeA) (oppositeEdge edgeB) (tA1, tA0) (tB1, tB0)
GT -> (absTimeB, ClockEdgeB edgeB) : goStatic absTimeA (absTimeB + tB0) edgeA (oppositeEdge edgeB) (tA0, tA1) (tB1, tB0)

goDynamic ::
Int64 -> Int64 ->
ActiveEdge -> ActiveEdge ->
Signal domA Int64 -> Signal domB Int64 ->
[(Int64, ClockEdgeAB)]
goDynamic absTimeA absTimeB edgeA edgeB tsA@(~(tA :- tsA0)) tsB@(~(tB :- tsB0)) =
-- Even though we lazily match on the signal's constructor, this shouldn't
-- build up a significant chain of chunks as 'absTimeX' gets evaluated
-- every iteration.
case compare absTimeA absTimeB of
-- XXX: Sorry for breaking the 80/90 limit. I have no idea how to break this
-- over multiple lines without sacrificing readability.
LT -> (absTimeA, ClockEdgeA edgeA) : goDynamic (absTimeA + tA) absTimeB (oppositeEdge edgeA) edgeB tsA0 tsB
EQ -> (absTimeA, ClockEdgeAB edgeA edgeB) : goDynamic (absTimeA + tA) (absTimeB + tB) (oppositeEdge edgeA) (oppositeEdge edgeB) tsA0 tsB0
GT -> (absTimeB, ClockEdgeB edgeB) : goDynamic absTimeA (absTimeB + tB) edgeA (oppositeEdge edgeB) tsA tsB0

-- | Given two clock periods, produce a list of clock ticks indicating which clock
-- (or both) ticked. Can be used in components handling multiple clocks, such
-- as @unsafeSynchronizer@ or dual clock FIFOs. In contrast to 'clockTicksEither',
-- this version also produces the time since the last event. For the first edge
-- the time since the last event is set to zero.
--
-- If your primitive does not care about coincided clock edges, it should - by
-- convention - replace it by @ClockEdgeB edgeB : ClockEdgeA edgeA:@.
clockEdgesEitherRelative ::
ActiveEdge ->
-- ^ First active edge for clock A
ActiveEdge ->
-- ^ First active edge for clock B
Either Int64 (Signal domA Int64) ->
Either Int64 (Signal domB Int64) ->
[(Int64, ClockEdgeAB)]
clockEdgesEitherRelative firstEdgeA firstEdgeB clkA clkB = zip relativeTimestamps ticks
where
relativeTimestamps = 0 : zipWith (-) (tail timestamps) timestamps
(timestamps, ticks) = unzip (clockEdgesEitherAbsolute firstEdgeA firstEdgeB clkA clkB)
35 changes: 35 additions & 0 deletions clash-vexriscv/tests/unittests/Tests/Extra.hs
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
-- SPDX-FileCopyrightText: 2024 Google LLC
--
-- SPDX-License-Identifier: Apache-2.0

module Tests.Extra where

import Prelude

import Data.Functor ((<&>))
import Language.Haskell.TH (mkName)
import Language.Haskell.TH.Lib

-- | Generate a do-expression where each statement is a call to @test@ and the
-- arguments are determined by the carthesian product of given argument names.
--
-- For example:
--
-- > carthesianProductTests ["x", "y"]
-- > ======>
-- > do
-- > test x x
-- > test x y
-- > test y x
-- > test y y
--
carthesianProductTests :: [String] -> ExpQ
carthesianProductTests names = doE $
cartProd names <&> \(aName, bName) -> noBindS $
let
aExp = varE (mkName aName)
bExp = varE (mkName bName)
in
[| test $aExp $bExp |]
where
cartProd xs = [(a, b) | a <- xs, b <- xs]
Loading

0 comments on commit 19897d8

Please sign in to comment.