Skip to content

charmgil/LIBLINEAR.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LIBLINEAR

Build Status Build status

Julia bindings for LIBLINEAR.

using RDatasets

# Load Fisher's classic iris data
iris = dataset("datasets", "iris")

# LIBLINEAR handles multi-class data automatically using a one-against-the rest strategy
labels = iris[:Species]

# First dimension of input data is features; second is instances
instances = convert(Array,iris[:, 1:4])'

# Train SVM on half of the data using default parameters. See the linear_train
# function in LIBLINEAR.jl for optional parameter settings.
model = linear_train(labels[1:2:end], instances[:, 1:2:end], verbose=true);

# Test model on the other half of the data.
(predicted_labels, decision_values) = linear_predict(model, instances[:, 2:2:end]);

# Compute accuracy
@printf "Accuracy: %.2f%%\n" mean((predicted_labels .== labels[2:2:end]))*100

Credits

Created by Zhizhong Li.

This package is adapted from the LIBSVM Julia package by Simon Kornblith.

About

LIBLINEAR bindings for Julia

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 100.0%