forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Qiang Kou (KK)
authored
Aug 17, 2016
1 parent
08864e0
commit 83dc0b4
Showing
9 changed files
with
543 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
library(mxnet) | ||
|
||
get_symbol <- function(num_classes = 1000) { | ||
input_data <- mx.symbol.Variable(name = "data") | ||
# stage 1 | ||
conv1 <- mx.symbol.Convolution(data = input_data, kernel = c(11, 11), stride = c(4, 4), num_filter = 96) | ||
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu") | ||
pool1 <- mx.symbol.Pooling(data = relu1, pool_type = "max", kernel = c(3, 3), stride = c(2, 2)) | ||
lrn1 <- mx.symbol.LRN(data = pool1, alpha = 0.0001, beta = 0.75, knorm = 1, nsize = 5) | ||
# stage 2 | ||
conv2 <- mx.symbol.Convolution(data = lrn1, kernel = c(5, 5), pad = c(2, 2), num_filter = 256) | ||
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu") | ||
pool2 <- mx.symbol.Pooling(data = relu2, kernel = c(3, 3), stride = c(2, 2), pool_type = "max") | ||
lrn2 <- mx.symbol.LRN(data = pool2, alpha = 0.0001, beta = 0.75, knorm = 1, nsize = 5) | ||
# stage 3 | ||
conv3 <- mx.symbol.Convolution(data = lrn2, kernel = c(3, 3), pad = c(1, 1), num_filter = 384) | ||
relu3 <- mx.symbol.Activation(data = conv3, act_type = "relu") | ||
conv4 <- mx.symbol.Convolution(data = relu3, kernel = c(3, 3), pad = c(1, 1), num_filter = 384) | ||
relu4 <- mx.symbol.Activation(data = conv4, act_type = "relu") | ||
conv5 <- mx.symbol.Convolution(data = relu4, kernel = c(3, 3), pad = c(1, 1), num_filter = 256) | ||
relu5 <- mx.symbol.Activation(data = conv5, act_type = "relu") | ||
pool3 <- mx.symbol.Pooling(data = relu5, kernel = c(3, 3), stride = c(2, 2), pool_type = "max") | ||
# stage 4 | ||
flatten <- mx.symbol.Flatten(data = pool3) | ||
fc1 <- mx.symbol.FullyConnected(data = flatten, num_hidden = 4096) | ||
relu6 <- mx.symbol.Activation(data = fc1, act_type = "relu") | ||
dropout1 <- mx.symbol.Dropout(data = relu6, p = 0.5) | ||
# stage 5 | ||
fc2 <- mx.symbol.FullyConnected(data = dropout1, num_hidden = 4096) | ||
relu7 <- mx.symbol.Activation(data = fc2, act_type = "relu") | ||
dropout2 <- mx.symbol.Dropout(data = relu7, p = 0.5) | ||
# stage 6 | ||
fc3 <- mx.symbol.FullyConnected(data = dropout2, num_hidden = num_classes) | ||
softmax <- mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax') | ||
return(softmax) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
library(mxnet) | ||
|
||
ConvFactory <- function(data, num_filter, kernel, stride = c(1, 1), pad = c(0, 0), | ||
name = '', suffix = '') { | ||
conv <- mx.symbol.Convolution(data = data, num_filter = num_filter, kernel = kernel, stride = stride, | ||
pad = pad, name = paste('conv_', name, suffix, sep = "")) | ||
act <- mx.symbol.Activation(data = conv, act_type = 'relu', name = paste('relu_', name, suffix, sep = '')) | ||
return(act) | ||
} | ||
|
||
InceptionFactory <- function(data, num_1x1, num_3x3red, num_3x3, | ||
num_d5x5red, num_d5x5, pool, proj, name) { | ||
# 1x1 | ||
c1x1 <- ConvFactory(data = data, num_filter = num_1x1, kernel = c(1, 1), | ||
name = paste(name, '_1x1', sep = '')) | ||
# 3x3 reduce + 3x3 | ||
c3x3r = ConvFactory(data = data, num_filter = num_3x3red, kernel = c(1, 1), | ||
name = paste(name, '_3x3', sep = ''), suffix = '_reduce') | ||
c3x3 = ConvFactory(data = c3x3r, num_filter = num_3x3, kernel = c(3, 3), | ||
pad = c(1, 1), name = paste(name, '_3x3', sep = '')) | ||
# double 3x3 reduce + double 3x3 | ||
cd5x5r = ConvFactory(data = data, num_filter = num_d5x5red, kernel = c(1, 1), | ||
name = paste(name, '_5x5', sep = ''), suffix = '_reduce') | ||
cd5x5 = ConvFactory(data = cd5x5r, num_filter = num_d5x5, kernel = c(5, 5), pad = c(2, 2), | ||
name = paste(name, '_5x5', sep = '')) | ||
# pool + proj | ||
pooling = mx.symbol.Pooling(data = data, kernel = c(3, 3), stride = c(1, 1), | ||
pad = c(1, 1), pool_type = pool, | ||
name = paste(pool, '_pool_', name, '_pool', sep = '')) | ||
|
||
cproj = ConvFactory(data = pooling, num_filter = proj, kernel = c(1, 1), | ||
name = paste(name, '_proj', sep = '')) | ||
# concat | ||
concat_lst <- list() | ||
concat_lst <- c(c1x1, c3x3, cd5x5, cproj) | ||
concat_lst$num.args = 4 | ||
concat_lst$name = paste('ch_concat_', name, '_chconcat', sep = '') | ||
concat = mxnet:::mx.varg.symbol.Concat(concat_lst) | ||
return(concat) | ||
} | ||
|
||
|
||
get_symbol <- function(num_classes = 1000) { | ||
data <- mx.symbol.Variable("data") | ||
conv1 <- ConvFactory(data, 64, kernel = c(7, 7), stride = c(2, 2), pad = c(3, 3), name = "conv1") | ||
pool1 <- mx.symbol.Pooling(conv1, kernel = c(3, 3), stride = c(2, 2), pool_type = "max") | ||
conv2 <- ConvFactory(pool1, 64, kernel = c(1, 1), stride = c(1, 1), name = "conv2") | ||
conv3 <- ConvFactory(conv2, 192, kernel = c(3, 3), stride = c(1, 1), pad = c(1, 1), name = "conv3") | ||
pool3 <- mx.symbol.Pooling(conv3, kernel = c(3, 3), stride = c(2, 2), pool_type = "max") | ||
|
||
in3a <- InceptionFactory(pool3, 64, 96, 128, 16, 32, "max", 32, name = "in3a") | ||
in3b <- InceptionFactory(in3a, 128, 128, 192, 32, 96, "max", 64, name = "in3b") | ||
pool4 <- mx.symbol.Pooling(in3b, kernel = c(3, 3), stride = c(2, 2), pool_type = "max") | ||
in4a <- InceptionFactory(pool4, 192, 96, 208, 16, 48, "max", 64, name = "in4a") | ||
in4b <- InceptionFactory(in4a, 160, 112, 224, 24, 64, "max", 64, name = "in4b") | ||
in4c <- InceptionFactory(in4b, 128, 128, 256, 24, 64, "max", 64, name = "in4c") | ||
in4d <- InceptionFactory(in4c, 112, 144, 288, 32, 64, "max", 64, name = "in4d") | ||
in4e <- InceptionFactory(in4d, 256, 160, 320, 32, 128, "max", 128, name = "in4e") | ||
pool5 <- mx.symbol.Pooling(in4e, kernel = c(3, 3), stride = c(2, 2), pool_type = "max") | ||
in5a <- InceptionFactory(pool5, 256, 160, 320, 32, 128, "max", 128, name = "in5a") | ||
in5b <- InceptionFactory(in5a, 384, 192, 384, 48, 128, "max", 128, name = "in5b") | ||
pool6 <- mx.symbol.Pooling(in5b, kernel = c(7, 7), stride = c(1, 1), pool_type = "avg" ) | ||
flatten <- mx.symbol.Flatten(data = pool6, name = 'flatten0') | ||
fc1 <- mx.symbol.FullyConnected(data = flatten, num_hidden = num_classes) | ||
softmax <- mx.symbol.SoftmaxOutput(data = fc1, name = 'softmax') | ||
return(softmax) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
library(mxnet) | ||
|
||
ConvFactory <- function(data, num_filter, kernel, stride = c(1, 1), | ||
pad = c(0, 0), name = '', suffix = '') { | ||
conv <- mx.symbol.Convolution(data = data, num_filter = num_filter, | ||
kernel = kernel, stride = stride, pad = pad, | ||
name = paste('conv_', name, suffix, sep = '')) | ||
|
||
bn <- mx.symbol.BatchNorm(data = conv, name = paste('bn_', name, suffix, sep = '')) | ||
act <- mx.symbol.Activation(data = bn, act_type = 'relu', name = paste('relu_', name, suffix, sep = '')) | ||
return(act) | ||
} | ||
|
||
InceptionFactoryA <- function(data, num_1x1, num_3x3red, num_3x3, num_d3x3red, | ||
num_d3x3, pool, proj, name) { | ||
# 1x1 | ||
c1x1 <- ConvFactory(data = data, num_filter = num_1x1, kernel = c(1, 1), name = paste(name, '_1x1', sep = '') | ||
) | ||
# 3x3 reduce + 3x3 | ||
c3x3r <- ConvFactory(data = data, num_filter = num_3x3red, kernel = c(1, 1), | ||
name = paste(name, '_3x3', sep = ''), suffix = '_reduce') | ||
|
||
c3x3 <- ConvFactory(data = c3x3r, num_filter = num_3x3, kernel = c(3, 3), | ||
pad = c(1, 1), name = paste(name, '_3x3', sep = '')) | ||
# double 3x3 reduce + double 3x3 | ||
cd3x3r <- ConvFactory(data = data, num_filter = num_d3x3red, kernel = c(1, 1), | ||
name = paste(name, '_double_3x3', sep = ''), suffix = '_reduce') | ||
|
||
cd3x3 <- ConvFactory(data = cd3x3r, num_filter = num_d3x3, kernel = c(3, 3), | ||
pad = c(1, 1), name = paste(name, '_double_3x3_0', sep = '')) | ||
|
||
cd3x3 <- ConvFactory(data = cd3x3, num_filter = num_d3x3, kernel = c(3, 3), | ||
pad = c(1, 1), name = paste(name, '_double_3x3_1', sep = '')) | ||
# pool + proj | ||
pooling <- mx.symbol.Pooling(data = data, kernel = c(3, 3), stride = c(1, 1), | ||
pad = c(1, 1), pool_type = pool, | ||
name = paste(pool, '_pool_', name, '_pool', sep = '')) | ||
cproj <- ConvFactory(data = pooling, num_filter = proj, kernel = c(1, 1), | ||
name = paste(name, '_proj', sep = '')) | ||
# concat | ||
concat_lst <- list() | ||
concat_lst <- c(c1x1, c3x3, cd3x3, cproj) | ||
concat_lst$num.args = 4 | ||
concat_lst$name = paste('ch_concat_', name, '_chconcat', sep = '') | ||
concat = mxnet:::mx.varg.symbol.Concat(concat_lst) | ||
return(concat) | ||
} | ||
|
||
InceptionFactoryB <- function(data, num_3x3red, num_3x3, num_d3x3red, num_d3x3, name) { | ||
# 3x3 reduce + 3x3 | ||
c3x3r <- ConvFactory(data = data, num_filter = num_3x3red, kernel = c(1, 1), | ||
name = paste(name, '_3x3', sep = ''), suffix = '_reduce') | ||
c3x3 <- ConvFactory(data = c3x3r, num_filter = num_3x3, kernel = c(3, 3), | ||
pad = c(1, 1), stride = c(2, 2), name = paste(name, '_3x3', sep = '')) | ||
# double 3x3 reduce + double 3x3 | ||
cd3x3r <- ConvFactory(data = data, num_filter = num_d3x3red, kernel = c(1, 1), | ||
name = paste(name, '_double_3x3', sep = ''), suffix = '_reduce') | ||
cd3x3 <- ConvFactory(data = cd3x3r, num_filter = num_d3x3, kernel = c(3, 3), | ||
pad = c(1, 1), stride = c(1, 1), name = paste(name, '_double_3x3_0', sep = '')) | ||
cd3x3 = ConvFactory(data = cd3x3, num_filter = num_d3x3, kernel = c(3, 3), | ||
pad = c(1, 1), stride = c(2, 2), name = paste(name, '_double_3x3_1', sep = '')) | ||
# pool + proj | ||
pooling = mx.symbol.Pooling(data = data, kernel = c(3, 3), stride = c(2, 2), | ||
pad = c(1, 1), pool_type = "max", | ||
name = paste('max_pool_', name, '_pool', sep = '')) | ||
# concat | ||
concat_lst <- list() | ||
concat_lst <- c(c3x3, cd3x3, pooling) | ||
concat_lst$num.args = 3 | ||
concat_lst$name = paste('ch_concat_', name, '_chconcat', sep = '') | ||
concat = mxnet:::mx.varg.symbol.Concat(concat_lst) | ||
return(concat) | ||
} | ||
|
||
get_symbol <- function(num_classes = 1000) { | ||
# data | ||
data = mx.symbol.Variable(name = "data") | ||
# stage 1 | ||
conv1 = ConvFactory(data = data, num_filter = 64, kernel = c(7, 7), | ||
stride = c(2, 2), pad = c(3, 3), name = 'conv1') | ||
pool1 = mx.symbol.Pooling(data = conv1, kernel = c(3, 3), stride = c(2, 2), | ||
name = 'pool1', pool_type = 'max') | ||
# stage 2 | ||
conv2red = ConvFactory(data = pool1, num_filter = 64, kernel = c(1, 1), | ||
stride = c(1, 1), name = 'conv2red') | ||
conv2 = ConvFactory(data = conv2red, num_filter = 192, kernel = c(3, 3), | ||
stride = c(1, 1), pad = c(1, 1), name = 'conv2') | ||
pool2 = mx.symbol.Pooling(data = conv2, kernel = c(3, 3), stride = c(2, 2), | ||
name = 'pool2', pool_type = 'max') | ||
# stage 2 | ||
in3a = InceptionFactoryA(pool2, 64, 64, 64, 64, 96, "avg", 32, '3a') | ||
in3b = InceptionFactoryA(in3a, 64, 64, 96, 64, 96, "avg", 64, '3b') | ||
in3c = InceptionFactoryB(in3b, 128, 160, 64, 96, '3c') | ||
# stage 3 | ||
in4a = InceptionFactoryA(in3c, 224, 64, 96, 96, 128, "avg", 128, '4a') | ||
in4b = InceptionFactoryA(in4a, 192, 96, 128, 96, 128, "avg", 128, '4b') | ||
in4c = InceptionFactoryA(in4b, 160, 128, 160, 128, 160, "avg", 128, '4c') | ||
in4d = InceptionFactoryA(in4c, 96, 128, 192, 160, 192, "avg", 128, '4d') | ||
in4e = InceptionFactoryB(in4d, 128, 192, 192, 256, '4e') | ||
# stage 4 | ||
in5a = InceptionFactoryA(in4e, 352, 192, 320, 160, 224, "avg", 128, '5a') | ||
in5b = InceptionFactoryA(in5a, 352, 192, 320, 192, 224, "max", 128, '5b') | ||
# global avg pooling | ||
avg = mx.symbol.Pooling(data = in5b, kernel = c(7, 7), stride = c(1, 1), | ||
name = "global_pool", pool_type = 'avg') | ||
# linear classifier | ||
flatten = mx.symbol.Flatten(data = avg, name = 'flatten') | ||
fc1 = mx.symbol.FullyConnected(data = flatten, | ||
num_hidden = num_classes, | ||
name = 'fc1') | ||
softmax = mx.symbol.SoftmaxOutput(data = fc1, name = 'softmax') | ||
return(softmax) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
library(mxnet) | ||
|
||
get_symbol <- function(num_classes = 1000) { | ||
data <- mx.symbol.Variable('data') | ||
# first conv | ||
conv1 <- mx.symbol.Convolution(data = data, kernel = c(5, 5), num_filter = 20) | ||
|
||
tanh1 <- mx.symbol.Activation(data = conv1, act_type = "tanh") | ||
pool1 <- mx.symbol.Pooling(data = tanh1, pool_type = "max", kernel = c(2, 2), stride = c(2, 2)) | ||
|
||
# second conv | ||
conv2 <- mx.symbol.Convolution(data = pool1, kernel = c(5, 5), num_filter = 50) | ||
tanh2 <- mx.symbol.Activation(data = conv2, act_type = "tanh") | ||
pool2 <- mx.symbol.Pooling(data = tanh2, pool_type = "max", kernel = c(2, 2), stride = c(2, 2)) | ||
# first fullc | ||
flatten <- mx.symbol.Flatten(data = pool2) | ||
fc1 <- mx.symbol.FullyConnected(data = flatten, num_hidden = 500) | ||
tanh3 <- mx.symbol.Activation(data = fc1, act_type = "tanh") | ||
# second fullc | ||
fc2 <- mx.symbol.FullyConnected(data = tanh3, num_hidden = num_classes) | ||
# loss | ||
lenet <- mx.symbol.SoftmaxOutput(data = fc2, name = 'softmax') | ||
return(lenet) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
library(mxnet) | ||
|
||
get_symbol <- function(num_classes = 1000) { | ||
data <- mx.symbol.Variable('data') | ||
fc1 <- mx.symbol.FullyConnected(data = data, name = 'fc1', num_hidden = 128) | ||
act1 <- mx.symbol.Activation(data = fc1, name = 'relu1', act_type = "relu") | ||
fc2 <- mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64) | ||
act2 <- mx.symbol.Activation(data = fc2, name = 'relu2', act_type = "relu") | ||
fc3 <- mx.symbol.FullyConnected(data = act2, name = 'fc3', num_hidden = num_classes) | ||
mlp <- mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax') | ||
return(mlp) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
library(mxnet) | ||
|
||
conv_factory <- function(data, num_filter, kernel, stride, | ||
pad, act_type = 'relu', conv_type = 0) { | ||
if (conv_type == 0) { | ||
conv = mx.symbol.Convolution(data = data, num_filter = num_filter, | ||
kernel = kernel, stride = stride, pad = pad) | ||
bn = mx.symbol.BatchNorm(data = conv) | ||
act = mx.symbol.Activation(data = bn, act_type = act_type) | ||
return(act) | ||
} else if (conv_type == 1) { | ||
conv = mx.symbol.Convolution(data = data, num_filter = num_filter, | ||
kernel = kernel, stride = stride, pad = pad) | ||
bn = mx.symbol.BatchNorm(data = conv) | ||
return(bn) | ||
} | ||
} | ||
|
||
residual_factory <- function(data, num_filter, dim_match) { | ||
if (dim_match) { | ||
identity_data = data | ||
conv1 = conv_factory(data = data, num_filter = num_filter, kernel = c(3, 3), | ||
stride = c(1, 1), pad = c(1, 1), act_type = 'relu', conv_type = 0) | ||
|
||
conv2 = conv_factory(data = conv1, num_filter = num_filter, kernel = c(3, 3), | ||
stride = c(1, 1), pad = c(1, 1), conv_type = 1) | ||
new_data = identity_data + conv2 | ||
act = mx.symbol.Activation(data = new_data, act_type = 'relu') | ||
return(act) | ||
} else { | ||
conv1 = conv_factory(data = data, num_filter = num_filter, kernel = c(3, 3), | ||
stride = c(2, 2), pad = c(1, 1), act_type = 'relu', conv_type = 0) | ||
conv2 = conv_factory(data = conv1, num_filter = num_filter, kernel = c(3, 3), | ||
stride = c(1, 1), pad = c(1, 1), conv_type = 1) | ||
|
||
# adopt project method in the paper when dimension increased | ||
project_data = conv_factory(data = data, num_filter = num_filter, kernel = c(1, 1), | ||
stride = c(2, 2), pad = c(0, 0), conv_type = 1) | ||
new_data = project_data + conv2 | ||
act = mx.symbol.Activation(data = new_data, act_type = 'relu') | ||
return(act) | ||
} | ||
} | ||
|
||
residual_net <- function(data, n) { | ||
#fisrt 2n layers | ||
for (i in 1:n) { | ||
data = residual_factory(data = data, num_filter = 16, dim_match = TRUE) | ||
} | ||
|
||
|
||
#second 2n layers | ||
for (i in 1:n) { | ||
if (i == 1) { | ||
data = residual_factory(data = data, num_filter = 32, dim_match = FALSE) | ||
} else { | ||
data = residual_factory(data = data, num_filter = 32, dim_match = TRUE) | ||
} | ||
} | ||
#third 2n layers | ||
for (i in 1:n) { | ||
if (i == 1) { | ||
data = residual_factory(data = data, num_filter = 64, dim_match = FALSE) | ||
} else { | ||
data = residual_factory(data = data, num_filter = 64, dim_match = TRUE) | ||
} | ||
} | ||
return(data) | ||
} | ||
|
||
get_symbol <- function(num_classes = 10) { | ||
conv <- conv_factory(data = mx.symbol.Variable(name = 'data'), num_filter = 16, | ||
kernel = c(3, 3), stride = c(1, 1), pad = c(1, 1), | ||
act_type = 'relu', conv_type = 0) | ||
n <- 3 # set n = 3 means get a model with 3*6+2=20 layers, set n = 9 means 9*6+2=56 layers | ||
resnet <- residual_net(conv, n) # | ||
pool <- mx.symbol.Pooling(data = resnet, kernel = c(7, 7), pool_type = 'avg') | ||
flatten <- mx.symbol.Flatten(data = pool, name = 'flatten') | ||
fc <- mx.symbol.FullyConnected(data = flatten, num_hidden = num_classes, name = 'fc1') | ||
softmax <- mx.symbol.SoftmaxOutput(data = fc, name = 'softmax') | ||
return(softmax) | ||
} |
Oops, something went wrong.