This repository contains code and weights files for the following Keras models:
- VGG16
- VGG19
- ResNet50
We plan on adding Inception v3 soon.
All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json
. For instance, if you have set image_dim_ordering=tf
, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth".
Weights can be automatically loaded upon instantiation (weights='imagenet'
argument in model constructor). Weights are automatically downloaded if necessary, and cached locally in ~/.keras/models/
.
Note that using these models requires the latest version of Keras (from the Github repo, not PyPI).
from resnet50 import ResNet50
from keras.preprocessing import image
from imagenet_utils import preprocess_input, decode_predictions
model = ResNet50(weights='imagenet')
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
print('Predicted:', decode_predictions(preds))
# print: [[u'n02504458', u'African_elephant']]
from vgg16 import VGG16
from keras.preprocessing import image
from imagenet_utils import preprocess_input
model = VGG16(weights='imagenet', include_top=False)
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
features = model.predict(x)
from vgg19 import VGG19
from keras.preprocessing import image
from imagenet_utils import preprocess_input
from keras.models import Model
base_model = VGG19(weights='imagenet')
model = Model(input=base_model.input, output=base_model.get_layer('block4_pool').output)
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
block4_pool_features = model.predict(x)