IMU + X Loosely-Coupled Fusion Localization
-
IMU + GPS
-
IMU + 6DoF Odom (e.g.: Stereo Visual Odometry)
-
UKF(including JUKF and SVD-UKF): IMU and 6 DoF Odometry (Stereo Visual Odometry) Loosely-Coupled Fusion Localization based on UKF
-
MAP(User-defined L-M, Ceres-Solver, G2O and GTSAM)
-
Dataset
- KAIST dataset: ROS publish
-
Sensors
- IMU
- Numerical Integration (TODO: RK4)
- Pre-Integration
- Wheel Odometer
- Manometer
- GPS
- 6DoF Odom (Stereo Visual Odometry)
- LiDAR
- Multi-modal data
- IMU
-
State Estimation
- EKF
- ESKF
- IEKF
- UKF
- JUKF
- SVD-UKF
- Particle Filter
- MAP
- User-defined G-N
- Ceres-Solver
- G2O
- GTSAM
- EKF
-
Local / Global Angular Error (Rotation Perturbation)
- Local Angular Error (OK)
- Global Angular Error (TODO: why Poor)
enum ANGULAR_ERROR { LOCAL_ANGULAR_ERROR, GLOBAL_ANGULAR_ERROR };
-
Debug
- Check Measurement Jacobian Matrix
tested on Ubuntu 16.04, Ubuntu 18.04 and Ubuntu 20.04
-
Ubuntu 16.04 & ROS Kinetic
- OpenCV 3
- ROS package: nmea_navsat_driver
- GeographicLib 1.50.1 (built from souce code, cmake 3.18.0 tested)
-
Ubuntu 18.04 & ROS Melodic
- OpenCV 3
- ROS package: nmea_navsat_driver
- GeographicLib 1.49
sudo apt install libgeographic-dev
-
Ubuntu 20.04 & ROS Melodic
- OpenCV 3
- ROS package: nmea_navsat_driver
- GeographicLib 1.50.1
sudo apt install libgeographic-dev
mkdir -p ws_msf/src
cd ws_msf/src
git clone xxx
cd ..
catkin_make -j4 # error happened when using the default cmake 3.5.1 on Ubuntu 16.04, upgrade it
# or
catkin build -j4
test data: utbm_robocar_dataset_20180719_noimage.bag
- [sensor_msgs/Imu] /imu/data: 100 hz
- [nmea_msgs/Sentence] /nmea_sentence: 15 hz
- [sensor_msgs/NavSatFix] /fix: 5 hz
- [nav_msgs/Path] /nav_path: 63 hz
roslaunch imu_x_fusion imu_gnss_fusion.launch
rosbag play -s 25 utbm_robocar_dataset_20180719_noimage.bag
ROS graph and path on rviz:
plot the result path (fusion_gps.csv & fusion_state.csv) on Google Map using the scripts folium_csv.py
:
roslaunch imu_x_fusion imu_vo_fusion.launch [est:=ekf, ukf or map]
# https://github.com/cggos/orbslam2_cg
# pose cov:
# sigma_pv: 0.001
# sigma_rp: 0.5
# sigma_yaw: 0.5
roslaunch orbslam2_ros run_stereo_euroc.launch
rosbag play V1_01_easy.bag
results(Green path: estimated pose; Red path: pose of VO):
Download orbslam2_v101easy.bag
rosbag play orbslam2_v101easy.bag
# TODO: Test
roslaunch imu_x_fusion imu_vo_fusion_mynteye.launch
roslaunch mynt_eye_ros_wrapper mynteye.launch
rosrun imu_x_fusion kaist_pub /dev_sdb/datasets/KAIST/urban39-pankyo
# pull from DockerHub
sudo docker pull cggos/ubuntu-ros-slam:bionic-melodic
# run, e.g.: imu_vo_fusion
./scripts/run_docker.sh
# modify the script for running others
code format based on Google style
./batch_format.sh
-
Requirements
sudo apt install graphviz sudo apt install doxygen
-
Generate
# output in html and latex dir doxygen Doxygen.config
- Welcom to join the Discord channel #multi-sensor-fusion