Skip to content

cerebrai/onepose

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

onepose

Human pose estimation based on ViTPose within one line

pip install git+https://github.com/developer0hye/onepose.git
import cv2
import onepose
img = cv2.imread("sample.png")
keypoints = onepose.create_model().to("cuda")(img)

sample_all_vis

One Piece's Luffy pose predicted by onepose

Examples

Plot key points on an image(Pretty version)

import cv2
import onepose

if __name__ == '__main__':
    img = cv2.imread('sample.png')
    model = onepose.create_model()

    keypoints = model(img)
    onepose.visualize_keypoints(img, keypoints, model.keypoint_info, model.skeleton_info)
    cv2.imshow('img', img)
    cv2.waitKey(0)

Plot key points on an image(Non-pretty version)

Just understand how to access and process predicted key points

import cv2
import onepose

if __name__ == '__main__':
    img = cv2.imread('sample.png')
    model = onepose.create_model()

    keypoints = model(img)
    num_keypoints = len(keypoints['points'])
    
    for i in range(num_keypoints):
        print(f"Point {i} {model.keypoint_info[i]} (x, y) : {keypoints['points'][i]} confidence: {keypoints['confidence'][i]}")
        
        if keypoints['confidence'][i] < 0.5:
            color = (0, 0, 255)
        else:
            color = (0, 255, 0)
        
        cv2.circle(img, (int(keypoints['points'][i][0]), int(keypoints['points'][i][1])), 5, color, -1)
    cv2.imshow('img', img)
    cv2.waitKey(0)

Notice that occluded key points are plotted in red. You can discard these points using confidence score.

occluded_sample_vitpose_h_simple_coco_output

Point 0 {'name': 'nose', 'id': 0, 'color': [51, 153, 255], 'type': 'upper', 'swap': ''} (x, y) : [139.64694 137.86743] confidence: [0.97471446]
Point 1 {'name': 'left_eye', 'id': 1, 'color': [51, 153, 255], 'type': 'upper', 'swap': 'right_eye'} (x, y) : [166.26282  121.430725] confidence: [0.90367746]       
Point 2 {'name': 'right_eye', 'id': 2, 'color': [51, 153, 255], 'type': 'upper', 'swap': 'left_eye'} (x, y) : [113.557556 121.25748 ] confidence: [0.93930066]       
Point 3 {'name': 'left_ear', 'id': 3, 'color': [51, 153, 255], 'type': 'upper', 'swap': 'right_ear'} (x, y) : [194.79327 137.52954] confidence: [0.8964122]
Point 4 {'name': 'right_ear', 'id': 4, 'color': [51, 153, 255], 'type': 'upper', 'swap': 'left_ear'} (x, y) : [ 84.58154 136.81473] confidence: [0.90676653]
Point 5 {'name': 'left_shoulder', 'id': 5, 'color': [0, 255, 0], 'type': 'upper', 'swap': 'right_shoulder'} (x, y) : [227.78476 259.47287] confidence: [0.8609412]   
Point 6 {'name': 'right_shoulder', 'id': 6, 'color': [255, 128, 0], 'type': 'upper', 'swap': 'left_shoulder'} (x, y) : [ 52.88922 256.38934] confidence: [0.83017635]
Point 7 {'name': 'left_elbow', 'id': 7, 'color': [0, 255, 0], 'type': 'upper', 'swap': 'right_elbow'} (x, y) : [269.67554 397.33008] confidence: [0.7196459]
Point 8 {'name': 'right_elbow', 'id': 8, 'color': [255, 128, 0], 'type': 'upper', 'swap': 'left_elbow'} (x, y) : [ 12.287186 379.43762 ] confidence: [0.65044713]    
Point 9 {'name': 'left_wrist', 'id': 9, 'color': [0, 255, 0], 'type': 'upper', 'swap': 'right_wrist'} (x, y) : [291.44168 401.09717] confidence: [0.0140133]
Point 10 {'name': 'right_wrist', 'id': 10, 'color': [255, 128, 0], 'type': 'upper', 'swap': 'left_wrist'} (x, y) : [ -9.994644 397.6245  ] confidence: [0.01367151]  
Point 11 {'name': 'left_hip', 'id': 11, 'color': [0, 255, 0], 'type': 'lower', 'swap': 'right_hip'} (x, y) : [189.8435  401.15857] confidence: [0.04964036]
Point 12 {'name': 'right_hip', 'id': 12, 'color': [255, 128, 0], 'type': 'lower', 'swap': 'left_hip'} (x, y) : [ 89.0609  401.10492] confidence: [0.02243446]
Point 13 {'name': 'left_knee', 'id': 13, 'color': [0, 255, 0], 'type': 'lower', 'swap': 'right_knee'} (x, y) : [286.65494 397.4558 ] confidence: [0.04406731]
Point 14 {'name': 'right_knee', 'id': 14, 'color': [255, 128, 0], 'type': 'lower', 'swap': 'left_knee'} (x, y) : [ 97.916   398.36865] confidence: [0.02304012]
Point 15 {'name': 'left_ankle', 'id': 15, 'color': [0, 255, 0], 'type': 'lower', 'swap': 'right_ankle'} (x, y) : [151.2844  129.83142] confidence: [0.01141046]
Point 16 {'name': 'right_ankle', 'id': 16, 'color': [255, 128, 0], 'type': 'lower', 'swap': 'left_ankle'} (x, y) : [ 91.45804 108.1178 ] confidence: [0.0140612]

Multiple-person pose estimation with YOLOv8

pip install ultralytics
import cv2
from ultralytics import YOLO
import onepose

detection_model = YOLO("yolov8m.pt")

pose_estimiation_model = onepose.create_model()

img = cv2.imread("multiple_person_sample.webp")
draw_img = img.copy()

results = detection_model(img)[0]
boxes = results.boxes.xyxy
clses = results.boxes.cls
probs = results.boxes.conf

for cls, box, prob in zip(clses, boxes, probs):
    if cls != 0:
        continue

    x1, y1, x2, y2 = box
    # crop image
    person_img = img[int(y1):int(y2), int(x1):int(x2)]
    cv2.rectangle(draw_img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 1)
    
    keypoints = pose_estimiation_model(person_img)
    num_keypoints = len(keypoints['points'])
    
    for i in range(num_keypoints):
        keypoints['points'][i][0] += x1
        keypoints['points'][i][1] += y1
    
    onepose.visualize_keypoints(draw_img, keypoints, pose_estimiation_model.keypoint_info, pose_estimiation_model.skeleton_info)
cv2.imshow("draw_img", draw_img)
cv2.waitKey(0)

multiple_person_sample_vitpose_h_simple_coco_output

Print supported models

import onepose
print(onepose.list_models()) # ['ViTPose_base_simple_coco', 'ViTPose_large_simple_coco', 'ViTPose_huge_simple_coco', ...]

Create a model

import onepose
model = onepose.create_model('ViTPose_huge_simple_coco')

References

open-mmlab/mmpose

ViTAE-Transformer/ViTPose

jaehyunnn/ViTPose_pytorch

JunkyByte/easy_ViTPose

About

Human pose estimation within one line

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%