Recommender System Library is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback.
First, you need install Numpy, Pandas, Scikit Learn, scipy Sparse, Surpise, Implicit, LightFM
Then, clone repository and install using pip
$ git clone https://github.com/celerative/PPS-RecSys-Nicolas.git
$ pip install -e .
- Alternating Least Squares (ALS)
- Bayesian Personalized Ranking (BPR)
- Global Average
- Item Average
- User Average
- K-Nearest Neighbors (KNN)
- KNN Basic
- KNN Baseline
- KNN with Means
- KNN with Zero Score
- Single Value Descomposition (SVD)
- Weighted Approximate-Rank Pairwise (WARP)
- Mean Absolute Error (MAE)
- Root Mean Square Error (RMSE)
- Fraction of Concordant Pairs (FCP)
- Area Under the Curve (AUC)
- Precision
- Recall
- F1
- Cross Validation
- Grid Search CV
- Cosine Similarity
- Pearson Correlation
- Load: load model
- Dump: save model
- Marcos, Federico
- Palazzesi, Nicolás