Skip to content

Commit

Permalink
Updated equitation indexing
Browse files Browse the repository at this point in the history
  • Loading branch information
cwl160030 committed Nov 1, 2023
1 parent 2416c05 commit d8b66d7
Showing 1 changed file with 18 additions and 18 deletions.
36 changes: 18 additions & 18 deletions Lesson4_DeepPot.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@
"metadata": {
"id": "jvwwiTzS_yxR"
},
"execution_count": 1,
"execution_count": null,
"outputs": []
},
{
Expand Down Expand Up @@ -155,7 +155,7 @@
"metadata": {
"id": "v9RdVoWhpVBi"
},
"execution_count": 2,
"execution_count": null,
"outputs": []
},
{
Expand Down Expand Up @@ -188,12 +188,12 @@
"s(R_{1i}) & s(R_{1i}) \\frac{x_{1i}}{R_{1i}} & s(R_{1i}) \\frac{y_{1i}}{R_{1i}} & s(R_{1i}) \\frac{z_{1i}}{R_{1i}} \\\\ \\\\\n",
"s(R_{2i}) & s(R_{2i}) \\frac{x_{2i}}{R_{2i}} & s(R_{2i}) \\frac{y_{i1}}{R_{2i}} & s(R_{2i}) \\frac{z_{2i}}{R_{2i}} \\\\ \\\\\n",
"\\cdots & \\cdots & \\cdots & \\cdots \\\\ \\\\\n",
"s(R_{ni}) & s(R_{ni}) \\frac{x_{ni}}{R_{ni}} & s(R_{ni}) \\frac{y_{ni}}{R_{ni}} & s(R_{ni}) \\frac{z_{ni}}{R_{ni}}\n",
"s(R_{n_ii}) & s(R_{n_ii}) \\frac{x_{n_ii}}{R_{n_ii}} & s(R_{n_ii}) \\frac{y_{n_ii}}{R_{n_ii}} & s(R_{n_ii}) \\frac{z_{n_ii}}{R_{n_ii}}\n",
"\\end{pmatrix}\n",
"\\end{eqnarray}$$\n",
"<br/>\n",
"\n",
"where $n$ is the number of neighbors for the atom. $s$ is the weighting function.\n",
"where $n_i$ is the number of neighbors for atom $i$ and $s$ is the weighting function.\n",
"\n",
"$$\\begin{eqnarray}\n",
"s(R_{ji}) =\n",
Expand Down Expand Up @@ -233,7 +233,7 @@
"metadata": {
"id": "6CksVhkaqA9e"
},
"execution_count": 3,
"execution_count": null,
"outputs": []
},
{
Expand Down Expand Up @@ -262,25 +262,25 @@
"Now we use embedding neural networks to transform each of the $s$ values into $M_1$ numbers. This gives us the local embedding matrix $\\mathcal{G}$. Note the embedding neural network parameters depend on the chemical species of atom $i$ and atom $j$. \n",
"\n",
"$$\\begin{eqnarray}\n",
"{\\mathcal{G}}_i\n",
"g_i\n",
"= \\begin{pmatrix}\n",
"\\left( G[s(R_{1i})] \\right)_1 &\n",
"\\left( G[s(R_{1i})] \\right)_2 & \\cdots &\n",
"\\left( G[s(R_{1i})] \\right)_{m_1} \\\\\n",
"\\left( G[s(R_{2i})] \\right)_1 &\n",
"\\left( G[s(R_{2i})] \\right)_2 & \\cdots & \\left( G[s(R_{2i})] \\right)_{m_1} \\\\\n",
"\\cdots & \\cdots & \\cdots & \\cdots \\\\\n",
"\\left( G[s(R_{ni})] \\right)_1 &\n",
"\\left( G[s(R_{ni})] \\right)_2 & \\cdots & \\left( G [s(R_{ni})] \\right)_{m_1}\n",
"\\left( G[s(R_{n_ii})] \\right)_1 &\n",
"\\left( G[s(R_{n_ii})] \\right)_2 & \\cdots & \\left( G [s(R_{n_ii})] \\right)_{m_1}\n",
"\\end{pmatrix}\n",
"\\end{eqnarray}$$\n",
"\n",
"Two local embedding matrices are used: $\\mathcal{G}_{i1}$ is $n\\times M_1$ dimensions, while $\\mathcal{G}_{i2}$ is $n\\times M_2$ dimensions. The dimensions $M_1$ and $M_2$ represent the number of neural network parameters, where $M_1$ is larger than $M_2$.\n",
"Two local embedding matrices are used: $g_{i}^{1}$ is $n\\times M_1$ dimensions, while $g_{i}^{2}$ is $n\\times M_2$ dimensions. The dimensions $M_1$ and $M_2$ represent the number of neural network parameters, where $M_1$ is larger than $M_2$.\n",
"\n",
"By multiplying our local embedding matrices and environment matrices, we can preserve the translational, rotational, and permutational symmetry in the form of the encoded feature matrix $\\mathcal{D_i}$ \n",
"By multiplying our local embedding matrices and environment matrices, we can preserve the translational, rotational, and permutational symmetry in the form of the encoded feature matrix $D_i$ \n",
"\n",
"$$\\begin{eqnarray}\n",
"{\\mathcal{D}}_i = \\left( {\\mathcal{G}}_i^1 \\right)^T {\\mathcal{R}}_i {\\mathcal{R}}_i^T {\\mathcal{G}}_i^2\n",
"D_i = \\left( g_i^1 \\right)^T {\\mathcal{R}}_i {\\mathcal{R}}_i^T g_i^2\n",
"\\end{eqnarray}$$\n",
"\n",
"The local feature matrix is then mapped to the atomic energy using the fitting neural network. Finally, the atomic energies are summed to yield the total energy of the molecule."
Expand All @@ -303,7 +303,7 @@
"source": [
"### The Feature Class\n",
"\n",
"Here we define the feature class, which uses the local environment matrix ($\\mathcal{R}_i$) and local embedding matrices ($\\mathcal{G}^1_i$ and $\\mathcal{G}^2_i$) to construct the encoded feature matrix ($\\mathcal{D}_i$)."
"Here we define the feature class, which uses the local environment matrix ($\\mathcal{R}_i$) and local embedding matrices ($g^1_i$ and $g^2_i$) to construct the encoded feature matrix ($D_i$)."
],
"metadata": {
"id": "w7XZmhe7d1gW"
Expand Down Expand Up @@ -348,7 +348,7 @@
"metadata": {
"id": "WY8A0MmNqnvM"
},
"execution_count": 4,
"execution_count": null,
"outputs": []
},
{
Expand Down Expand Up @@ -381,7 +381,7 @@
"metadata": {
"id": "KWF2_lClqvpN"
},
"execution_count": 5,
"execution_count": null,
"outputs": []
},
{
Expand Down Expand Up @@ -431,7 +431,7 @@
"metadata": {
"id": "kfEi4Ffrq196"
},
"execution_count": 6,
"execution_count": null,
"outputs": []
},
{
Expand Down Expand Up @@ -489,7 +489,7 @@
},
"outputId": "82951cc4-9756-46bc-dc5e-a6443b3462df"
},
"execution_count": 7,
"execution_count": null,
"outputs": [
{
"output_type": "stream",
Expand Down Expand Up @@ -562,7 +562,7 @@
},
"outputId": "5be04806-9a15-46ab-99e0-cc92f5effe23"
},
"execution_count": 8,
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
Expand Down Expand Up @@ -606,7 +606,7 @@
},
"outputId": "61f07938-3b0e-4b03-9197-3fdf5d9896c5"
},
"execution_count": 9,
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
Expand Down

0 comments on commit d8b66d7

Please sign in to comment.