-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3 from calico/revision-upd
Revision updates to analyses
- Loading branch information
Showing
8 changed files
with
2,120 additions
and
40 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "bd382268-2054-4b77-bc6e-d8b4e8c2aa55", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"\n", | ||
"import pyranges as pr\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "3e02be85", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Parse vcf and extract eQTL rows\n", | ||
"\n", | ||
"eqtl_file = '/home/drk/seqnn/data/gtex_fine/susie_pip90/pos_merge.vcf'\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"id": "60078dd1", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"len(eqtl_df) = 17925\n", | ||
"len(eqtl_set) = 17925\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"#Read eQTLs\n", | ||
"\n", | ||
"eqtl_df = pd.read_csv(eqtl_file, sep='\\t', skiprows=1, names=['#CHROM', 'POS', 'ID', 'REF', 'ALT', 'feat1', 'feat2', 'featNaN'])[['#CHROM', 'POS', 'ID', 'REF', 'ALT']]\n", | ||
"eqtl_set = set(sorted(eqtl_df['ID'].values.tolist()))\n", | ||
"\n", | ||
"print(\"len(eqtl_df) = \" + str(len(eqtl_df)))\n", | ||
"print(\"len(eqtl_set) = \" + str(len(eqtl_set)))\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"id": "cefb9c25", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"--- replicate = f3c0 (fi = 3, ci = 0) ---\n", | ||
"len(vcf_df) = 17925\n", | ||
"len(seq_df) = 55497\n", | ||
"len(vcf_train_set) = 13750\n", | ||
"len(snp_list_train) = 13750\n", | ||
"len(snp_list_test) = 4175\n", | ||
"--- replicate = f3c1 (fi = 3, ci = 1) ---\n", | ||
"len(vcf_df) = 17925\n", | ||
"len(seq_df) = 55497\n", | ||
"len(vcf_train_set) = 13750\n", | ||
"len(snp_list_train) = 13750\n", | ||
"len(snp_list_test) = 4175\n", | ||
"--- replicate = f3c2 (fi = 3, ci = 2) ---\n", | ||
"len(vcf_df) = 17925\n", | ||
"len(seq_df) = 55497\n", | ||
"len(vcf_train_set) = 13750\n", | ||
"len(snp_list_train) = 13750\n", | ||
"len(snp_list_test) = 4175\n", | ||
"--- replicate = f3c3 (fi = 3, ci = 3) ---\n", | ||
"len(vcf_df) = 17925\n", | ||
"len(seq_df) = 55497\n", | ||
"len(vcf_train_set) = 13750\n", | ||
"len(snp_list_train) = 13750\n", | ||
"len(snp_list_test) = 4175\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"#Load sequence bed; output trained-on and held-out snp lists respectively\n", | ||
"\n", | ||
"valid_shift = False\n", | ||
"\n", | ||
"eqtl_out_file = 'gtex_susie_pip90'\n", | ||
"\n", | ||
"seq_bed_file = '/scratch3/drk/seqnn/data/v9/hg38/sequences.bed'\n", | ||
"\n", | ||
"num_folds = 8\n", | ||
"\n", | ||
"repl_index = [\n", | ||
" 'f3c0',\n", | ||
" 'f3c1',\n", | ||
" 'f3c2',\n", | ||
" 'f3c3',\n", | ||
"]\n", | ||
"\n", | ||
"#Loop over replicates\n", | ||
"for repl_str in repl_index :\n", | ||
" \n", | ||
" fi, ci = int(repl_str.split(\"c\")[0][1:]), int(repl_str.split(\"c\")[1])\n", | ||
" \n", | ||
" print(\"--- replicate = \" + repl_str + \" (fi = \" + str(fi) + \", ci = \" + str(ci) + \") ---\")\n", | ||
"\n", | ||
" vcf_df = eqtl_df.copy().reset_index(drop=True)\n", | ||
"\n", | ||
" print(\"len(vcf_df) = \" + str(len(vcf_df)))\n", | ||
"\n", | ||
" #Load sequence bed\n", | ||
" seq_df = pd.read_csv(seq_bed_file, sep='\\t', names=['chrom', 'start', 'end', 'label'])\n", | ||
"\n", | ||
" seq_df['start'] -= 163840\n", | ||
" seq_df['end'] += 163840\n", | ||
"\n", | ||
" test_fold = fi\n", | ||
" valid_fold = -1\n", | ||
" if valid_shift :\n", | ||
" valid_fold = (fi+1+ci) % num_folds\n", | ||
" else :\n", | ||
" valid_fold = (fi+1) % num_folds\n", | ||
"\n", | ||
" def _label_train(x) :\n", | ||
" if x == 'fold' + str(test_fold) :\n", | ||
" return 'test'\n", | ||
" elif x == 'fold' + str(valid_fold) :\n", | ||
" return 'valid'\n", | ||
" else :\n", | ||
" return 'train'\n", | ||
"\n", | ||
" seq_df['label'] = seq_df['label'].apply(_label_train)\n", | ||
"\n", | ||
" print(\"len(seq_df) = \" + str(len(seq_df)))\n", | ||
"\n", | ||
" #Intersect vcf against sequence bed\n", | ||
" seq_pr = pr.PyRanges(seq_df.rename(columns={'chrom' : 'Chromosome', 'start' : 'Start', 'end' : 'End'}))\n", | ||
"\n", | ||
" vcf_df['End'] = vcf_df['POS'] + 1\n", | ||
" vcf_pr = pr.PyRanges(vcf_df[['#CHROM', 'POS', 'End', 'ID', 'REF', 'ALT']].rename(columns={'#CHROM' : 'Chromosome', 'POS' : 'Start', 'REF' : 'ref', 'ALT' : 'alt'}))\n", | ||
"\n", | ||
" vcf_seq_df = vcf_pr.join(seq_pr, strandedness=False).df.copy().reset_index(drop=True)\n", | ||
" vcf_train_set = sorted(list(set(vcf_seq_df.query(\"label == 'train'\")['ID'].values)))\n", | ||
"\n", | ||
" print(\"len(vcf_train_set) = \" + str(len(vcf_train_set)))\n", | ||
"\n", | ||
" #Mark loci in the vcf that had been seen during training\n", | ||
" is_train_locus = []\n", | ||
" for _, row in vcf_df.iterrows () :\n", | ||
" if row['ID'] in vcf_train_set :\n", | ||
" is_train_locus.append(True)\n", | ||
" else :\n", | ||
" is_train_locus.append(False)\n", | ||
"\n", | ||
" vcf_df['is_train_locus'] = is_train_locus\n", | ||
"\n", | ||
" #Store final list of trained-on and non-trained-on SNP positions for the given fold\n", | ||
" vcf_df_train = vcf_df.query(\"is_train_locus == True\").copy().reset_index(drop=True)\n", | ||
" snp_list_train = sorted(list(set(vcf_df_train['ID'].values.tolist())))\n", | ||
"\n", | ||
" vcf_df_test = vcf_df.query(\"is_train_locus == False\").copy().reset_index(drop=True)\n", | ||
" snp_list_test = sorted(list(set(vcf_df_test['ID'].values.tolist())))\n", | ||
"\n", | ||
" print(\"len(snp_list_train) = \" + str(len(snp_list_train)))\n", | ||
" print(\"len(snp_list_test) = \" + str(len(snp_list_test)))\n", | ||
"\n", | ||
" with open(eqtl_out_file + \"_\" + repl_str + (\"s\" if valid_shift else \"\") + \"_train.txt\", 'wt') as out_f :\n", | ||
" for snp_id in snp_list_train :\n", | ||
" out_f.write(snp_id + '\\n')\n", | ||
"\n", | ||
" with open(eqtl_out_file + \"_\" + repl_str + (\"s\" if valid_shift else \"\") + \"_test.txt\", 'wt') as out_f :\n", | ||
" for snp_id in snp_list_test :\n", | ||
" out_f.write(snp_id + '\\n')\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5cdb135d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.