-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
937 additions
and
893 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,301 @@ | ||
# Copyright 2023 Calico LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ========================================================================= | ||
import pdb | ||
import sys | ||
from typing import Optional, List | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
|
||
gpu_devices = tf.config.experimental.list_physical_devices("GPU") | ||
for device in gpu_devices: | ||
tf.config.experimental.set_memory_growth(device, True) | ||
|
||
##################### | ||
# transfer learning # | ||
##################### | ||
class IA3(tf.keras.layers.Layer): | ||
# https://arxiv.org/pdf/2205.05638.pdf | ||
# ia3 module for attention layer, scale output. | ||
|
||
def __init__(self, | ||
original_layer, | ||
trainable=False, | ||
**kwargs): | ||
|
||
# keep the name of this layer the same as the original dense layer. | ||
original_layer_config = original_layer.get_config() | ||
name = original_layer_config["name"] | ||
kwargs.pop("name", None) | ||
super().__init__(name=name, trainable=trainable, **kwargs) | ||
|
||
self.output_dim = original_layer_config["units"] | ||
|
||
self.original_layer = original_layer | ||
self.original_layer.trainable = False | ||
|
||
# IA3 weights. Make it a dense layer to control trainable | ||
self._ia3_layer = tf.keras.layers.Dense( | ||
units=self.output_dim, | ||
use_bias=False, | ||
kernel_initializer=tf.keras.initializers.Ones(), | ||
trainable=True, | ||
name="ia3" | ||
) | ||
|
||
def call(self, inputs): | ||
original_output = self.original_layer(inputs) | ||
scaler = self._ia3_layer(tf.constant([[1]], dtype='float64'))[0] | ||
return original_output * scaler | ||
|
||
def get_config(self): | ||
config = super().get_config().copy() | ||
config.update( | ||
{ | ||
"size": self.output_dim, | ||
} | ||
) | ||
return config | ||
|
||
class IA3_ff(tf.keras.layers.Layer): | ||
# https://arxiv.org/pdf/2205.05638.pdf | ||
# ia3 module for down-projection ff layer, scale input. | ||
|
||
def __init__(self, | ||
original_layer, | ||
trainable=False, | ||
**kwargs): | ||
|
||
# keep the name of this layer the same as the original dense layer. | ||
original_layer_config = original_layer.get_config() | ||
name = original_layer_config["name"] | ||
kwargs.pop("name", None) | ||
super().__init__(name=name, trainable=trainable, **kwargs) | ||
|
||
self.input_dim = original_layer.input_shape[-1] | ||
|
||
self.original_layer = original_layer | ||
self.original_layer.trainable = False | ||
|
||
# IA3 weights. Make it a dense layer to control trainable | ||
self._ia3_layer = tf.keras.layers.Dense( | ||
units=self.input_dim, | ||
use_bias=False, | ||
kernel_initializer=tf.keras.initializers.Ones(), | ||
trainable=True, | ||
name="ia3_ff" | ||
) | ||
|
||
def call(self, inputs): | ||
scaler = self._ia3_layer(tf.constant([[1]], dtype='float64'))[0] | ||
return self.original_layer(inputs * scaler) | ||
|
||
def get_config(self): | ||
config = super().get_config().copy() | ||
config.update( | ||
{ | ||
"size": self.input_dim | ||
} | ||
) | ||
return config | ||
|
||
class Lora(tf.keras.layers.Layer): | ||
# adapted from: | ||
# https://arxiv.org/abs/2106.09685 | ||
# https://keras.io/examples/nlp/parameter_efficient_finetuning_of_gpt2_with_lora/ | ||
# https://github.com/Elvenson/stable-diffusion-keras-ft/blob/main/layers.py | ||
|
||
def __init__(self, | ||
original_layer, | ||
rank=8, | ||
alpha=16, | ||
trainable=False, | ||
**kwargs): | ||
|
||
# keep the name of this layer the same as the original dense layer. | ||
original_layer_config = original_layer.get_config() | ||
name = original_layer_config["name"] | ||
kwargs.pop("name", None) | ||
super().__init__(name=name, trainable=trainable, **kwargs) | ||
|
||
self.output_dim = original_layer_config["units"] | ||
|
||
if rank > self.output_dim: | ||
raise ValueError(f"LoRA rank {rank} must be less or equal than {self.output_dim}") | ||
|
||
self.rank = rank | ||
self.alpha = alpha | ||
self.scale = alpha / rank | ||
self.original_layer = original_layer | ||
self.original_layer.trainable = False | ||
|
||
# Note: the original paper mentions that normal distribution was | ||
# used for initialization. However, the official LoRA implementation | ||
# uses "Kaiming/He Initialization". | ||
self.down_layer = tf.keras.layers.Dense( | ||
units=rank, | ||
use_bias=False, | ||
kernel_initializer=tf.keras.initializers.HeUniform(), | ||
#kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1 / self.rank), | ||
trainable=True, | ||
name="lora_a" | ||
) | ||
|
||
self.up_layer = tf.keras.layers.Dense( | ||
units=self.output_dim, | ||
use_bias=False, | ||
kernel_initializer=tf.keras.initializers.Zeros(), | ||
trainable=True, | ||
name="lora_b" | ||
) | ||
|
||
def call(self, inputs): | ||
original_output = self.original_layer(inputs) | ||
lora_output = self.up_layer(self.down_layer(inputs)) * self.scale | ||
return original_output + lora_output | ||
|
||
def get_config(self): | ||
config = super().get_config().copy() | ||
config.update( | ||
{ | ||
"rank": self.rank, | ||
"alpha": self.alpha | ||
} | ||
) | ||
return config | ||
|
||
class Locon(tf.keras.layers.Layer): | ||
# LoRA for conv-layer, adapted from: | ||
# https://arxiv.org/pdf/2309.14859#page=23.84 | ||
# https://github.com/KohakuBlueleaf/LyCORIS/blob/main/lycoris/modules/locon.py | ||
# use default alpha and rank for locon | ||
|
||
def __init__(self, | ||
original_layer, | ||
rank=4, | ||
alpha=1, | ||
trainable=False, | ||
**kwargs): | ||
|
||
# keep the name of this layer the same as the original conv layer. | ||
original_layer_config = original_layer.get_config() | ||
name = original_layer_config["name"] | ||
kwargs.pop("name", None) | ||
super().__init__(name=name, trainable=trainable, **kwargs) | ||
|
||
self.input_dim = original_layer.input_shape[-1] | ||
self.output_dim = original_layer_config["filters"] | ||
|
||
if rank > self.output_dim: | ||
raise ValueError(f"LoRA rank {rank} must be less or equal than {self.output_dim}") | ||
|
||
self.rank = rank | ||
self.alpha = alpha | ||
self.scale = alpha / rank | ||
self.original_layer = original_layer | ||
self.original_layer.trainable = False | ||
|
||
input_dim = original_layer.input_shape[-1] | ||
output_dim = original_layer_config["filters"] | ||
kernel_size = original_layer_config['kernel_size'][0] | ||
stride = original_layer_config['strides'][0] | ||
dilation_rate = original_layer_config["dilation_rate"][0] | ||
|
||
# Note: the original paper mentions that normal distribution was | ||
# used for initialization. However, the official LoRA implementation | ||
# uses "Kaiming/He Initialization". | ||
|
||
self.down_layer = tf.keras.layers.Conv1D( | ||
filters=rank, | ||
kernel_size=kernel_size, | ||
strides=stride, | ||
padding="same", | ||
use_bias=False, | ||
dilation_rate=dilation_rate, | ||
kernel_initializer=tf.keras.initializers.HeUniform(), | ||
name='locon_down' | ||
) | ||
|
||
self.up_layer = tf.keras.layers.Conv1D( | ||
filters=output_dim, | ||
kernel_size=1, | ||
strides=stride, | ||
padding="same", | ||
use_bias=False, | ||
kernel_initializer=tf.keras.initializers.Zeros(), | ||
name='locon_up' | ||
) | ||
|
||
def call(self, inputs): | ||
original_output = self.original_layer(inputs) | ||
lora_output = self.up_layer(self.down_layer(inputs)) * self.scale | ||
return original_output + lora_output | ||
|
||
def get_config(self): | ||
config = super().get_config().copy() | ||
config.update( | ||
{ | ||
"rank": self.rank, | ||
"alpha": self.alpha | ||
} | ||
) | ||
return config | ||
|
||
class AdapterHoulsby(tf.keras.layers.Layer): | ||
# https://arxiv.org/abs/1902.00751 | ||
# adapted from: https://github.com/jain-harshil/Adapter-BERT | ||
|
||
def __init__( | ||
self, | ||
latent_size, | ||
activation=tf.keras.layers.ReLU(), | ||
**kwargs): | ||
super(AdapterHoulsby, self).__init__(**kwargs) | ||
self.latent_size = latent_size | ||
self.activation = activation | ||
|
||
def build(self, input_shape): | ||
self.down_project = tf.keras.layers.Dense( | ||
units=self.latent_size, | ||
activation="linear", | ||
kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=1e-3), | ||
bias_initializer="zeros", | ||
name='adapter_down' | ||
) | ||
|
||
self.up_project = tf.keras.layers.Dense( | ||
units=input_shape[-1], | ||
activation="linear", | ||
kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=1e-3), | ||
bias_initializer="zeros", | ||
name='adapter_up' | ||
) | ||
|
||
def call(self, inputs): | ||
projected_down = self.down_project(inputs) | ||
activated = self.activation(projected_down) | ||
projected_up = self.up_project(activated) | ||
output = projected_up + inputs | ||
return output | ||
|
||
def get_config(self): | ||
config = super().get_config().copy() | ||
config.update( | ||
{ | ||
"latent_size": self.latent_size, | ||
"activation": self.activation | ||
} | ||
) | ||
return config |
Oops, something went wrong.