Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
mdancho84 committed Oct 3, 2023
2 parents d6c910f + 4b2eabd commit c1929a1
Show file tree
Hide file tree
Showing 116 changed files with 916 additions and 872 deletions.
12 changes: 9 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,17 @@

> The time series toolkit for Python
This library is currently under development and is not intended for general usage yet. Functionality is experimental until release 0.1.0.

**Please ⭐ us on GitHub (it takes 2-seconds and means a lot).**

# Install Dev Version
# Installation

Install the latest stable version of `pytimetk` using `pip`:

```bash
pip install pytimetk
```

Alternatively you can install the development version:

```bash
pip install git+https://github.com/business-science/pytimetk.git
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
{
"hash": "182db38c4c9cc2c06603601c9965729c",
"hash": "2f2ffbe619aadc4e265ba920bfb7b9b6",
"result": {
"markdown": "---\ntitle: Install\ntoc: true\ntoc-depth: 3\nnumber-sections: true\nnumber-depth: 2\n---\n\n::: {.callout-warning collapse=\"false\"}\n## Under Development\n\nThis library is currently under development and is not intended for general usage yet. Functionality is experimental until release 0.1.0. \n:::\n\n# Quick Install\n\nLet's get you up and running with `timetk` fast. You can install from GitHub with this code. \n\n```bash\npip install git+https://github.com/business-science/pytimetk.git\n```\n\n# Next steps\n\nCheck out the [Quick Start Guide Next.](/getting-started/02_quick_start.html)\n\n# More Coming Soon...\n\nWe are in the early stages of development. But it's obvious the potential for `timetk` now in Python. 🐍\n\n- Please [⭐ us on GitHub](https://github.com/business-science/pytimetk) (it takes 2-seconds and means a lot). \n- To make requests, please see our [Project Roadmap GH Issue #2](https://github.com/business-science/pytimetk/issues/2). You can make requests there. \n- Want to contribute? [See our contributing guide here.](/contributing.html) \n\n",
"markdown": "---\ntitle: Install\ntoc: true\ntoc-depth: 3\nnumber-sections: true\nnumber-depth: 2\n---\n\n<!-- ::: {.callout-warning collapse=\"false\"}\n## Under Development\n\nThis library is currently under development and is not intended for general usage yet. Functionality is experimental until release 0.1.0. \n::: -->\n\n# Quick Install\n\nLet's get you up and running with `pytimetk` fast with the latest stable release. \n\n```bash\npip install pytimetk\n```\n\nYou can install from GitHub with this code. \n\n```bash\npip install git+https://github.com/business-science/pytimetk.git\n```\n\n# Next steps\n\nCheck out the [Quick Start Guide Next.](/getting-started/02_quick_start.html)\n\n# More Coming Soon...\n\nWe are in the early stages of development. But it's obvious the potential for `pytimetk` now in Python. 🐍\n\n- Please [⭐ us on GitHub](https://github.com/business-science/pytimetk) (it takes 2-seconds and means a lot). \n- To make requests, please see our [Project Roadmap GH Issue #2](https://github.com/business-science/pytimetk/issues/2). You can make requests there. \n- Want to contribute? [See our contributing guide here.](/contributing.html) \n\n",
"supporting": [
"01_installation_files"
],
Expand Down

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

6 changes: 3 additions & 3 deletions docs/_freeze/guides/04_wrangling/execute-results/html.json

Large diffs are not rendered by default.

6 changes: 3 additions & 3 deletions docs/_freeze/guides/05_augmenting/execute-results/html.json

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions docs/_freeze/index/execute-results/html.json

Large diffs are not rendered by default.

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions docs/_freeze/reference/augment_lags/execute-results/html.json

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions docs/_freeze/reference/floor_date/execute-results/html.json
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
{
"hash": "37169ce53884ca58b44fb584ba41b84d",
"hash": "b1784a0e4373ba1f0271f7c97929da2f",
"result": {
"markdown": "---\ntitle: floor_date\n---\n\n\n\n`floor_date(idx, unit='D')`\n\nRound a date down to the specified unit (e.g. Flooring).\n\nThe `floor_date` function takes a pandas Series of dates and returns a new Series with the dates rounded down to the specified unit.\n\n## Parameters\n\n| Name | Type | Description | Default |\n|--------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|\n| `idx` | pd.Series or pd.DatetimeIndex | The `idx` parameter is a pandas Series or pandas DatetimeIndex object that contains datetime values. It represents the dates that you want to round down. | _required_ |\n| `unit` | str | The `unit` parameter in the `floor_date` function is a string that specifies the time unit to which the dates in the `idx` series should be rounded down. It has a default value of \"D\", which stands for day. Other possible values for the `unit` parameter could be | `'D'` |\n\n## Returns\n\n| Type | Description |\n|-----------|--------------------------------------------------------------------------------------------|\n| pd.Series | The `floor_date` function returns a pandas Series object containing datetime64[ns] values. |\n\n## Examples\n\n\n::: {.cell execution_count=1}\n``` {.python .cell-code}\nimport timetk as tk\nimport pandas as pd\n\ndates = pd.date_range(\"2020-01-01\", \"2020-01-10\", freq=\"1H\")\ndates\n```\n\n::: {.cell-output .cell-output-display execution_count=1}\n```\nDatetimeIndex(['2020-01-01 00:00:00', '2020-01-01 01:00:00',\n '2020-01-01 02:00:00', '2020-01-01 03:00:00',\n '2020-01-01 04:00:00', '2020-01-01 05:00:00',\n '2020-01-01 06:00:00', '2020-01-01 07:00:00',\n '2020-01-01 08:00:00', '2020-01-01 09:00:00',\n ...\n '2020-01-09 15:00:00', '2020-01-09 16:00:00',\n '2020-01-09 17:00:00', '2020-01-09 18:00:00',\n '2020-01-09 19:00:00', '2020-01-09 20:00:00',\n '2020-01-09 21:00:00', '2020-01-09 22:00:00',\n '2020-01-09 23:00:00', '2020-01-10 00:00:00'],\n dtype='datetime64[ns]', length=217, freq='H')\n```\n:::\n:::\n\n\n::: {.cell execution_count=2}\n``` {.python .cell-code}\n# Works on DateTimeIndex\ntk.floor_date(dates, unit=\"D\")\n```\n\n::: {.cell-output .cell-output-display execution_count=2}\n```\n0 2020-01-01\n1 2020-01-01\n2 2020-01-01\n3 2020-01-01\n4 2020-01-01\n ... \n212 2020-01-09\n213 2020-01-09\n214 2020-01-09\n215 2020-01-09\n216 2020-01-10\nName: idx, Length: 217, dtype: datetime64[ns]\n```\n:::\n:::\n\n\n::: {.cell execution_count=3}\n``` {.python .cell-code}\n# Works on Pandas Series\ndates.to_series().floor_date(unit=\"D\")\n```\n\n::: {.cell-output .cell-output-display execution_count=3}\n```\n2020-01-01 00:00:00 2020-01-01\n2020-01-01 01:00:00 2020-01-01\n2020-01-01 02:00:00 2020-01-01\n2020-01-01 03:00:00 2020-01-01\n2020-01-01 04:00:00 2020-01-01\n ... \n2020-01-09 20:00:00 2020-01-09\n2020-01-09 21:00:00 2020-01-09\n2020-01-09 22:00:00 2020-01-09\n2020-01-09 23:00:00 2020-01-09\n2020-01-10 00:00:00 2020-01-10\nFreq: H, Length: 217, dtype: datetime64[ns]\n```\n:::\n:::\n\n\n",
"markdown": "---\ntitle: floor_date\n---\n\n\n\n`floor_date(idx, unit='D')`\n\nRound a date down to the specified unit (e.g. Flooring).\n\nThe `floor_date` function takes a pandas Series of dates and returns a new Series with the dates rounded down to the specified unit.\n\n## Parameters\n\n| Name | Type | Description | Default |\n|--------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|\n| `idx` | pd.Series or pd.DatetimeIndex | The `idx` parameter is a pandas Series or pandas DatetimeIndex object that contains datetime values. It represents the dates that you want to round down. | _required_ |\n| `unit` | str | The `unit` parameter in the `floor_date` function is a string that specifies the time unit to which the dates in the `idx` series should be rounded down. It has a default value of \"D\", which stands for day. Other possible values for the `unit` parameter could be | `'D'` |\n\n## Returns\n\n| Type | Description |\n|-----------|--------------------------------------------------------------------------------------------|\n| pd.Series | The `floor_date` function returns a pandas Series object containing datetime64[ns] values. |\n\n## Examples\n\n\n::: {.cell execution_count=1}\n``` {.python .cell-code}\nimport pytimetk as tk\nimport pandas as pd\n\ndates = pd.date_range(\"2020-01-01\", \"2020-01-10\", freq=\"1H\")\ndates\n```\n\n::: {.cell-output .cell-output-display execution_count=1}\n```\nDatetimeIndex(['2020-01-01 00:00:00', '2020-01-01 01:00:00',\n '2020-01-01 02:00:00', '2020-01-01 03:00:00',\n '2020-01-01 04:00:00', '2020-01-01 05:00:00',\n '2020-01-01 06:00:00', '2020-01-01 07:00:00',\n '2020-01-01 08:00:00', '2020-01-01 09:00:00',\n ...\n '2020-01-09 15:00:00', '2020-01-09 16:00:00',\n '2020-01-09 17:00:00', '2020-01-09 18:00:00',\n '2020-01-09 19:00:00', '2020-01-09 20:00:00',\n '2020-01-09 21:00:00', '2020-01-09 22:00:00',\n '2020-01-09 23:00:00', '2020-01-10 00:00:00'],\n dtype='datetime64[ns]', length=217, freq='H')\n```\n:::\n:::\n\n\n::: {.cell execution_count=2}\n``` {.python .cell-code}\n# Works on DateTimeIndex\ntk.floor_date(dates, unit=\"D\")\n```\n\n::: {.cell-output .cell-output-display execution_count=2}\n```\n0 2020-01-01\n1 2020-01-01\n2 2020-01-01\n3 2020-01-01\n4 2020-01-01\n ... \n212 2020-01-09\n213 2020-01-09\n214 2020-01-09\n215 2020-01-09\n216 2020-01-10\nName: idx, Length: 217, dtype: datetime64[ns]\n```\n:::\n:::\n\n\n::: {.cell execution_count=3}\n``` {.python .cell-code}\n# Works on Pandas Series\ndates.to_series().floor_date(unit=\"D\")\n```\n\n::: {.cell-output .cell-output-display execution_count=3}\n```\n2020-01-01 00:00:00 2020-01-01\n2020-01-01 01:00:00 2020-01-01\n2020-01-01 02:00:00 2020-01-01\n2020-01-01 03:00:00 2020-01-01\n2020-01-01 04:00:00 2020-01-01\n ... \n2020-01-09 20:00:00 2020-01-09\n2020-01-09 21:00:00 2020-01-09\n2020-01-09 22:00:00 2020-01-09\n2020-01-09 23:00:00 2020-01-09\n2020-01-10 00:00:00 2020-01-10\nFreq: H, Length: 217, dtype: datetime64[ns]\n```\n:::\n:::\n\n\n",
"supporting": [
"floor_date_files/figure-html"
],
Expand Down
4 changes: 2 additions & 2 deletions docs/_freeze/reference/future_frame/execute-results/html.json

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
{
"hash": "fd17202b24688e48f79820b63dcfc63c",
"hash": "3f4ae1fe214ce39f2cb107c8b8c5e545",
"result": {
"markdown": "---\ntitle: get_available_datasets\n---\n\n\n\n`datasets.get_datasets.get_available_datasets()`\n\nGet a list of 12 datasets that can be loaded with `timetk.load_dataset`.\n\nThe `get_available_datasets` function returns a sorted list of available dataset names from the `timetk.datasets` module. The available datasets are:\n\n## Returns\n\n| Type | Description |\n|--------|---------------------------------------------------------------------------------------------------------------------------|\n| list | The function `get_available_datasets` returns a sorted list of available dataset names from the `timetk.datasets` module. |\n\n## Examples\n\n\n::: {.cell execution_count=1}\n``` {.python .cell-code}\nimport timetk as tk\n\ntk.get_available_datasets()\n```\n\n::: {.cell-output .cell-output-display execution_count=1}\n```\n['bike_sales_sample',\n 'bike_sharing_daily',\n 'm4_daily',\n 'm4_hourly',\n 'm4_monthly',\n 'm4_quarterly',\n 'm4_weekly',\n 'm4_yearly',\n 'stocks_daily',\n 'taylor_30_min',\n 'walmart_sales_weekly',\n 'wikipedia_traffic_daily']\n```\n:::\n:::\n\n\n",
"markdown": "---\ntitle: get_available_datasets\n---\n\n\n\n`datasets.get_datasets.get_available_datasets()`\n\nGet a list of 12 datasets that can be loaded with `pytimetk.load_dataset`.\n\nThe `get_available_datasets` function returns a sorted list of available dataset names from the `pytimetk.datasets` module. The available datasets are:\n\n## Returns\n\n| Type | Description |\n|--------|-----------------------------------------------------------------------------------------------------------------------------|\n| list | The function `get_available_datasets` returns a sorted list of available dataset names from the `pytimetk.datasets` module. |\n\n## Examples\n\n\n::: {.cell execution_count=1}\n``` {.python .cell-code}\nimport pytimetk as tk\n\ntk.get_available_datasets()\n```\n\n::: {.cell-output .cell-output-display execution_count=1}\n```\n['bike_sales_sample',\n 'bike_sharing_daily',\n 'm4_daily',\n 'm4_hourly',\n 'm4_monthly',\n 'm4_quarterly',\n 'm4_weekly',\n 'm4_yearly',\n 'stocks_daily',\n 'taylor_30_min',\n 'walmart_sales_weekly',\n 'wikipedia_traffic_daily']\n```\n:::\n:::\n\n\n",
"supporting": [
"get_available_datasets_files/figure-html"
],
Expand Down

Large diffs are not rendered by default.

Loading

0 comments on commit c1929a1

Please sign in to comment.