Modeltime 0.6.0
Workflowset Integration
modeltime_fit_workflowset()
(#85) makes it easy to convert workflow_set
objects to Modeltime Tables (mdl_time_tbl
). Requires a refitting process that can now be performed in parallel or in sequence.
New Algorithms
- CROSTON (#5, #98) - This is a new engine that has been added to
exp_smoothing()
. - THETA (#5, #93) - This is a new engine that has been added to
exp_smoothing()
.
New Dials Parameters
exp_smoothing()
gained 3 new tunable parameters:
smooth_level()
: This is often called the "alpha" parameter used as the base level smoothing factor for exponential smoothing models.smooth_trend()
: This is often called the "beta" parameter used as the trend smoothing factor for exponential smoothing models.smooth_seasonal()
: This is often called the "gamma" parameter used as the seasonal smoothing factor for exponential smoothing models.
Parallel Processing
modeltime_refit()
: supports parallel processing. Seecontrol_refit()
modeltime_fit_workflowset()
: supports parallel processing. Seecontrol_workflowset()
Updates for parsnip >= 0.1.6
boost_tree(mtry)
: Mapping switched fromcolsample_bytree
tocolsample_bynode
.prophet_boost()
andarima_boost()
have been updated to reflect this change. tidymodels/parsnip#499
General Improvements
- Improve Model Description of Recursive Models (#96)
Potential Breaking Changes
- We've added new parameters to Exponential Smoothing Models.
exp_smoothing()
models produced in prior versions may require refitting withmodeltime_refit()
to upgrade their internals with the new parameters.