Skip to content

Commit

Permalink
Merge pull request geodynamics#613 from bobmyhill/spock
Browse files Browse the repository at this point in the history
added SPOCK EoS
  • Loading branch information
bobmyhill authored Nov 25, 2024
2 parents 391f602 + 93ec10b commit 566515d
Show file tree
Hide file tree
Showing 5 changed files with 297 additions and 0 deletions.
1 change: 1 addition & 0 deletions burnman/eos/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
from .morse_potential import Morse
from .reciprocal_kprime import RKprime
from .macaw import MACAW
from .spock import SPOCK
from .dks_liquid import DKS_L
from .dks_solid import DKS_S
from .aa import AA
Expand Down
3 changes: 3 additions & 0 deletions burnman/eos/helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from . import birch_murnaghan_4th as bm4
from . import modified_tait as mt
from . import macaw
from . import spock
from . import dks_liquid
from . import dks_solid
from . import hp
Expand Down Expand Up @@ -73,6 +74,8 @@ def create(method):
return mt.MT()
elif method == "macaw":
return macaw.MACAW()
elif method == "spock":
return spock.SPOCK()
elif method == "hp98":
return hp.HP98()
elif method == "hp_tmt":
Expand Down
229 changes: 229 additions & 0 deletions burnman/eos/spock.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,229 @@
from __future__ import absolute_import

# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit
# for the Earth and Planetary Sciences.
# Copyright (C) 2012 - 2024 by the BurnMan team, released under the GNU
# GPL v2 or later.


import scipy.optimize as opt
from scipy.special import gamma, gammainc, exp1
from . import equation_of_state as eos
import warnings
import numpy as np


# Try to import the jit from numba. If it is
# not available, just go with the standard
# python interpreter
try:
from numba import jit
except ImportError:

def jit(fn):
return fn


def gammaincc(a, x):
"""
An implementation of the non-regularised upper incomplete gamma
function. Computed using the relationship with the regularised
lower incomplete gamma function (scipy.special.gammainc).
Uses the recurrence relation wherever a<0.
"""
n = int(-np.floor(a))
if n > 0:
a = a + n
u_gamma = exp1(x) if a == 0 else (1.0 - gammainc(a, x)) * gamma(a)

for _ in range(n):
a = a - 1.0
u_gamma = (u_gamma - np.power(x, a) * np.exp(-x)) / a
return u_gamma
else:
return (1.0 - gammainc(a, x)) * gamma(a)


@jit(nopython=True)
def make_params(K_0, Kp_0, Kp_inf, Kdp_0):
dKpdlnV_zero = -Kdp_0 * K_0
c = Kp_inf
a = dKpdlnV_zero / (Kp_0 - Kp_inf)
b = (Kp_0 - Kp_inf) / a
return a, b, c


class SPOCK(eos.EquationOfState):
"""
Class for the Scaled Power Of Compression K-prime equation of state.
This equation is derived from the assumption that K' = b*(V/V_0)^a.
This equation of state has no temperature dependence.
"""

def isothermal_bulk_modulus_reuss(self, pressure, temperature, volume, params):
"""
Returns isothermal bulk modulus :math:`K_T` :math:`[Pa]` as a function of pressure :math:`[Pa]`,
temperature :math:`[K]` and volume :math:`[m^3]`.
"""
ai, bi, ci = make_params(
params["K_0"], params["Kprime_0"], params["Kprime_inf"], params["Kdprime_0"]
)

lnVrel = np.log(volume / params["V_0"])
return params["K_0"] * np.exp(-bi * (np.exp(ai * lnVrel) - 1.0) - ci * lnVrel)

def volume(self, pressure, temperature, params):
"""
Get the Vinet volume at a reference temperature for a given
pressure :math:`[Pa]`. Returns molar volume in :math:`[m^3]`
"""

def delta_pressure(x):
return self.pressure(0.0, x, params) - pressure

V = opt.brentq(delta_pressure, 0.1 * params["V_0"], 1.5 * params["V_0"])
return V

def pressure(self, temperature, volume, params):
"""
Returns pressure :math:`[Pa]` as a function of volume :math:`[m^3]`.
"""
ai, bi, ci = make_params(
params["K_0"], params["Kprime_0"], params["Kprime_inf"], params["Kdprime_0"]
)
lnVrel = np.log(volume / params["V_0"])
return params["P_0"] + (
params["K_0"]
* np.exp(bi)
/ ai
* np.power(bi, ci / ai)
* (
gammaincc(
-ci / ai,
bi * np.exp(ai * lnVrel),
)
- gammaincc(-ci / ai, bi)
)
)

def molar_internal_energy(self, pressure, temperature, volume, params):
"""
Returns the internal energy :math:`\\mathcal{E}` of the mineral. :math:`[J/mol]`
"""
ai, bi, ci = make_params(
params["K_0"], params["Kprime_0"], params["Kprime_inf"], params["Kdprime_0"]
)
lnVrel = np.log(volume / params["V_0"])
f = (
-params["V_0"]
* params["K_0"]
* np.exp(bi)
/ ai
* np.power(bi, (ci - 1.0) / ai)
)

Vrel = np.exp(lnVrel)
I1 = (
np.power(bi, 1.0 / ai)
* Vrel
* (
gammaincc(
-ci / ai,
bi * np.exp(ai * lnVrel),
)
- gammaincc(-ci / ai, bi)
)
)
I2 = gammaincc(
(1.0 - ci) / ai,
bi * np.exp(ai * lnVrel),
) - gammaincc((1.0 - ci) / ai, bi)

return params["E_0"] + params["P_0"] * (volume - params["V_0"]) + f * (I1 - I2)

def gibbs_free_energy(self, pressure, temperature, volume, params):
"""
Returns the Gibbs free energy :math:`\\mathcal{G}` of the mineral. :math:`[J/mol]`
"""
return (
self.molar_internal_energy(pressure, temperature, volume, params)
+ pressure * volume
)

def isentropic_bulk_modulus_reuss(self, pressure, temperature, volume, params):
"""
Returns adiabatic bulk modulus :math:`K_s` of the mineral. :math:`[Pa]`.
"""
return self.isothermal_bulk_modulus_reuss(pressure, temperature, volume, params)

def shear_modulus(self, pressure, temperature, volume, params):
"""
Returns shear modulus :math:`G` of the mineral. :math:`[Pa]`
"""
return 1.0e99

def entropy(self, pressure, temperature, volume, params):
"""
Returns the molar entropy :math:`\\mathcal{S}` of the mineral. :math:`[J/K/mol]`
"""
return 0.0

def molar_heat_capacity_v(self, pressure, temperature, volume, params):
"""
Since this equation of state does not contain temperature effects, return a very small number. :math:`[J/K/mol]`
"""
return 1.0e-99

def molar_heat_capacity_p(self, pressure, temperature, volume, params):
"""
Since this equation of state does not contain temperature effects, return a very small number. :math:`[J/K/mol]`
"""
return 1.0e-99

def thermal_expansivity(self, pressure, temperature, volume, params):
"""
Since this equation of state does not contain temperature effects, return zero. :math:`[1/K]`
"""
return 0.0

def grueneisen_parameter(self, pressure, temperature, volume, params):
"""
Since this equation of state does not contain temperature effects, return zero. :math:`[unitless]`
"""
return 0.0

def validate_parameters(self, params):
"""
Check for existence and validity of the parameters.
The value for :math:`K'_{\\infty}` is thermodynamically bounded
between 5/3 and :math:`K'_0` :cite:`StaceyDavis2004`.
"""

if "E_0" not in params:
params["E_0"] = 0.0
if "P_0" not in params:
params["P_0"] = 1.0e5

# Check that all the required keys are in the dictionary
expected_keys = ["V_0", "K_0", "Kprime_0", "Kdprime_0", "Kprime_inf"]
for k in expected_keys:
if k not in params:
raise KeyError("params object missing parameter : " + k)

# Finally, check that the values are reasonable.
if params["P_0"] < 0.0:
warnings.warn("Unusual value for P_0", stacklevel=2)
if params["V_0"] < 1.0e-7 or params["V_0"] > 1.0e-3:
warnings.warn("Unusual value for V_0", stacklevel=2)
if params["K_0"] < 1.0e9 or params["K_0"] > 1.0e13:
warnings.warn("Unusual value for K_0", stacklevel=2)
if params["Kprime_0"] < 0.0 or params["Kprime_0"] > 10.0:
warnings.warn("Unusual value for Kprime_0", stacklevel=2)
if params["Kdprime_0"] > 0.0:
warnings.warn("Unusual value for Kdprime_0", stacklevel=2)
if (
params["Kprime_inf"] < 5.0 / 3.0
or params["Kprime_inf"] > params["Kprime_0"]
):
warnings.warn("Unusual value for Kprime_inf", stacklevel=2)
56 changes: 56 additions & 0 deletions misc/benchmarks/spock_benchmarks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
from __future__ import absolute_import

# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit
# for the Earth and Planetary Sciences.
# Copyright (C) 2012 - 2024 by the BurnMan team, released under the GNU
# GPL v2 or later.

from burnman.tools.eos import check_eos_consistency
from burnman import Mineral
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

HMX_params = {
"P_0": 1.0e5,
"V_0": 1.0e-6, # arbitrary value
"K_0": 15.22e9,
"Kprime_0": 7.54,
"Kdprime_0": -7.54 / 15.22e9,
"Kprime_inf": 2.63,
"molar_mass": 0.296155,
"equation_of_state": "spock",
}

HMX = Mineral(HMX_params)

if check_eos_consistency(HMX, tol=1.0e-5, including_shear_properties=False):
print("The SPOCK EoS is internally consistent.\n")

pressures = np.linspace(0.0, 100.0e9, 6)
temperatures = 0.0 + 0.0 * pressures
V, K_T = HMX.evaluate(["V", "K_T"], pressures, temperatures)

for i in range(6):
print(
f"{pressures[i]/1.e9:3.0f} GPa: "
f"V/V_0 = {V[i]/HMX_params['V_0']:.3f}, "
f"K_T = {K_T[i]/1.e9:6.2f} GPa"
)


fig1 = mpimg.imread("figures/Lozano_Aslam_2022_Fig6c_HMX.png")
plt.imshow(fig1, extent=[0.0, 100.0, 0, 500.0], aspect="auto")

for a in [1.0, 1.5, 2.0]:
HMX_params["Kdprime_0"] = -a * HMX_params["Kprime_0"] / HMX_params["K_0"]

pressures = np.linspace(0.0, 100.0e9, 101)
temperatures = 0.0 + 0.0 * pressures
K_T = HMX.evaluate(["K_T"], pressures, temperatures)[0]

plt.plot(pressures / 1.0e9, K_T / 1.0e9, linestyle=":", label=f"SPOCK {a}")

plt.ylim(0.0, 500.0)
plt.legend(loc=(0.025, 0.5))
plt.show()
8 changes: 8 additions & 0 deletions misc/ref/spock_benchmarks.py.out
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
The SPOCK EoS is internally consistent.

0 GPa: V/V_0 = 1.000, K_T = 15.22 GPa
20 GPa: V/V_0 = 0.711, K_T = 137.70 GPa
40 GPa: V/V_0 = 0.638, K_T = 243.48 GPa
60 GPa: V/V_0 = 0.596, K_T = 342.73 GPa
80 GPa: V/V_0 = 0.566, K_T = 437.90 GPa
100 GPa: V/V_0 = 0.543, K_T = 530.17 GPa

0 comments on commit 566515d

Please sign in to comment.