Skip to content

Commit

Permalink
Merge pull request #1787 from bmaltais/dev2
Browse files Browse the repository at this point in the history
v22.3.1
  • Loading branch information
bmaltais authored Dec 21, 2023
2 parents 5f9f891 + ce74aac commit 41009ae
Show file tree
Hide file tree
Showing 22 changed files with 2,241 additions and 261 deletions.
2 changes: 1 addition & 1 deletion .release
Original file line number Diff line number Diff line change
@@ -1 +1 @@
v22.3.0
v22.3.1
50 changes: 9 additions & 41 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -202,8 +202,8 @@ This Colab notebook was not created or maintained by me; however, it appears to

I would like to express my gratitude to camendutu for their valuable contribution. If you encounter any issues with the Colab notebook, please report them on their repository.

| Colab | Info |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------- |
| Colab | Info |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------ |
| [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/camenduru/kohya_ss-colab/blob/main/kohya_ss_colab.ipynb) | kohya_ss_gui_colab |

## Installation
Expand Down Expand Up @@ -651,6 +651,12 @@ masterpiece, best quality, 1boy, in business suit, standing at street, looking b


## Change History
* 2023/12/20 (v22.3.1)
- Add goto button to manual caption utility
- Add missing options for various LyCORIS training algorythms

Check warning on line 656 in README.md

View workflow job for this annotation

GitHub Actions / build

"algorythms" should be "algorithms".

Check warning on line 656 in README.md

View workflow job for this annotation

GitHub Actions / build

"algorythms" should be "algorithms".

Check warning on line 656 in README.md

View workflow job for this annotation

GitHub Actions / build

"algorythms" should be "algorithms".
- Refactor how feilds are shown or hidden
- Made max value for network and convolution rank 512 except for LyCORIS/LoKr.

* 2023/12/06 (v22.3.0)
- Merge sd-scripts updates:
- `finetune\tag_images_by_wd14_tagger.py` now supports the separator other than `,` with `--caption_separator` option. Thanks to KohakuBlueleaf! PR [#913](https://github.com/kohya-ss/sd-scripts/pull/913)
Expand All @@ -664,42 +670,4 @@ masterpiece, best quality, 1boy, in business suit, standing at street, looking b
- `--ds_ratio` option denotes the ratio of the Deep Shrink. `0.5` means the half of the original latent size for the Deep Shrink.
- `--dst1`, `--dst2`, `--dsd1`, `--dsd2` and `--dsr` prompt options are also available.
- Add GLoRA support

* 2023/12/03 (v22.2.2)
- Update Lycoris module to 2.0.0 (https://github.com/KohakuBlueleaf/LyCORIS/blob/0006e2ffa05a48d8818112d9f70da74c0cd30b99/README.md)
- Update Lycoris merge and extract tools
- Remove anoying warning about local pip modules that is not necessary.
- Adding support for LyCORIS presets
- Adding Support for LyCORIS Native Fine-Tuning
- Adding support for Lycoris Diag-OFT

* 2023/11/20 (v22.2.1)
- Fix issue with `Debiased Estimation loss` not getting properly loaded from json file. Oups.

* 2023/11/15 (v22.2.0)
- sd-scripts code base update:
- `sdxl_train.py` now supports different learning rates for each Text Encoder.
- Example:
- `--learning_rate 1e-6`: train U-Net only
- `--train_text_encoder --learning_rate 1e-6`: train U-Net and two Text Encoders with the same learning rate (same as the previous version)
- `--train_text_encoder --learning_rate 1e-6 --learning_rate_te1 1e-6 --learning_rate_te2 1e-6`: train U-Net and two Text Encoders with the different learning rates
- `--train_text_encoder --learning_rate 0 --learning_rate_te1 1e-6 --learning_rate_te2 1e-6`: train two Text Encoders only
- `--train_text_encoder --learning_rate 1e-6 --learning_rate_te1 1e-6 --learning_rate_te2 0`: train U-Net and one Text Encoder only
- `--train_text_encoder --learning_rate 0 --learning_rate_te1 0 --learning_rate_te2 1e-6`: train one Text Encoder only

- `train_db.py` and `fine_tune.py` now support different learning rates for Text Encoder. Specify with `--learning_rate_te` option.
- To train Text Encoder with `fine_tune.py`, specify `--train_text_encoder` option too. `train_db.py` trains Text Encoder by default.

- Fixed the bug that Text Encoder is not trained when block lr is specified in `sdxl_train.py`.

- Debiased Estimation loss is added to each training script. Thanks to sdbds!
- Specify `--debiased_estimation_loss` option to enable it. See PR [#889](https://github.com/kohya-ss/sd-scripts/pull/889) for details.
- Training of Text Encoder is improved in `train_network.py` and `sdxl_train_network.py`. Thanks to KohakuBlueleaf! PR [#895](https://github.com/kohya-ss/sd-scripts/pull/895)
- The moving average of the loss is now displayed in the progress bar in each training script. Thanks to shirayu! PR [#899](https://github.com/kohya-ss/sd-scripts/pull/899)
- PagedAdamW32bit optimizer is supported. Specify `--optimizer_type=PagedAdamW32bit`. Thanks to xzuyn! PR [#900](https://github.com/kohya-ss/sd-scripts/pull/900)
- Other bug fixes and improvements.
- kohya_ss gui updates:
- Implement GUI support for SDXL finetune TE1 and TE2 training LR parameters and for non SDXL finetune TE training parameter
- Implement GUI support for Dreambooth TE LR parameter
- Implement Debiased Estimation loss at the botom of the Advanced Parameters tab.

-
10 changes: 2 additions & 8 deletions gui.sh
Original file line number Diff line number Diff line change
Expand Up @@ -72,14 +72,8 @@ fi
#Set OneAPI if it's not set by the user
if [[ "$@" == *"--use-ipex"* ]]
then
echo "Setting OneAPI environment"
if [ ! -x "$(command -v sycl-ls)" ]
then
if [[ -z "$ONEAPI_ROOT" ]]
then
ONEAPI_ROOT=/opt/intel/oneapi
fi
source $ONEAPI_ROOT/setvars.sh
if [ -d "$SCRIPT_DIR/venv" ]; then
export LD_LIBRARY_PATH=$(realpath "$SCRIPT_DIR/venv")/lib/:$LD_LIBRARY_PATH
fi
export NEOReadDebugKeys=1
export ClDeviceGlobalMemSizeAvailablePercent=100
Expand Down
8 changes: 7 additions & 1 deletion library/class_basic_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,9 +115,15 @@ def __init__(
interactive=True,
)
with gr.Row():
self.max_grad_norm = gr.Slider(
label="Max grad norm",
value=1.0,
minimum=0.0,
maximum=1.0
)
self.lr_scheduler_args = gr.Textbox(
label="LR scheduler extra arguments",
placeholder='(Optional) eg: "lr_end=5e-5"',
placeholder='(Optional) eg: "milestones=[1,10,30,50]" "gamma=0.1"',
)
self.optimizer_args = gr.Textbox(
label="Optimizer extra arguments",
Expand Down
2 changes: 2 additions & 0 deletions library/class_lora_tab.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
from library.verify_lora_gui import gradio_verify_lora_tab
from library.resize_lora_gui import gradio_resize_lora_tab
from library.extract_lora_gui import gradio_extract_lora_tab
from library.convert_lcm_gui import gradio_convert_lcm_tab
from library.extract_lycoris_locon_gui import gradio_extract_lycoris_locon_tab
from library.extract_lora_from_dylora_gui import gradio_extract_dylora_tab
from library.merge_lycoris_gui import gradio_merge_lycoris_tab
Expand All @@ -24,6 +25,7 @@ def __init__(self, folders='', headless: bool = False):
'This section provide LoRA tools to help setup your dataset...'
)
gradio_extract_dylora_tab(headless=headless)
gradio_convert_lcm_tab(headless=headless)
gradio_extract_lora_tab(headless=headless)
gradio_extract_lycoris_locon_tab(headless=headless)
gradio_merge_lora_tab = GradioMergeLoRaTab()
Expand Down
5 changes: 5 additions & 0 deletions library/common_gui.py
Original file line number Diff line number Diff line change
Expand Up @@ -710,6 +710,11 @@ def run_cmd_training(**kwargs):
lr_scheduler_args = kwargs.get('lr_scheduler_args', '')
if lr_scheduler_args != '':
run_cmd += f' --lr_scheduler_args {lr_scheduler_args}'

max_grad_norm = kwargs.get('max_grad_norm', '')
if max_grad_norm != '':
run_cmd += f' --max_grad_norm="{max_grad_norm}"'

return run_cmd


Expand Down
118 changes: 118 additions & 0 deletions library/convert_lcm_gui.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
import gradio as gr
import os
import subprocess
from .common_gui import (
get_saveasfilename_path,
get_file_path,
)
from library.custom_logging import setup_logging

# Set up logging
log = setup_logging()

folder_symbol = "\U0001f4c2" # 📂
refresh_symbol = "\U0001f504" # 🔄
save_style_symbol = "\U0001f4be" # 💾
document_symbol = "\U0001F4C4" # 📄

PYTHON = "python3" if os.name == "posix" else "./venv/Scripts/python.exe"


def convert_lcm(
name,
model_path,
lora_scale,
model_type
):
run_cmd = f'{PYTHON} "{os.path.join("tools","lcm_convert.py")}"'
# Construct the command to run the script
run_cmd += f' --name "{name}"'
run_cmd += f' --model "{model_path}"'
run_cmd += f" --lora-scale {lora_scale}"

if model_type == "SDXL":
run_cmd += f" --sdxl"
if model_type == "SSD-1B":
run_cmd += f" --ssd-1b"

log.info(run_cmd)

# Run the command
if os.name == "posix":
os.system(run_cmd)
else:
subprocess.run(run_cmd)

# Return a success message
log.info("Done extracting...")


def gradio_convert_lcm_tab(headless=False):
with gr.Tab("Convert to LCM"):
gr.Markdown("This utility convert a model to an LCM model.")
lora_ext = gr.Textbox(value="*.safetensors", visible=False)
lora_ext_name = gr.Textbox(value="LCM model types", visible=False)
model_ext = gr.Textbox(value="*.safetensors", visible=False)
model_ext_name = gr.Textbox(value="Model types", visible=False)

with gr.Row():
model_path = gr.Textbox(
label="Stable Diffusion model to convert to LCM",
interactive=True,
)
button_model_path_file = gr.Button(
folder_symbol,
elem_id="open_folder_small",
visible=(not headless),
)
button_model_path_file.click(
get_file_path,
inputs=[model_path, model_ext, model_ext_name],
outputs=model_path,
show_progress=False,
)

name = gr.Textbox(
label="Name of the new LCM model",
placeholder="Path to the LCM file to create",
interactive=True,
)
button_name = gr.Button(
folder_symbol,
elem_id="open_folder_small",
visible=(not headless),
)
button_name.click(
get_saveasfilename_path,
inputs=[name, lora_ext, lora_ext_name],
outputs=name,
show_progress=False,
)

with gr.Row():
lora_scale = gr.Slider(
label="Strength of the LCM",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
interactive=True,
)
# with gr.Row():
# no_half = gr.Checkbox(label="Convert the new LCM model to FP32", value=False)
model_type = gr.Dropdown(
label="Model type", choices=["SD15", "SDXL", "SD-1B"], value="SD15"
)

extract_button = gr.Button("Extract LCM")

extract_button.click(
convert_lcm,
inputs=[
name,
model_path,
lora_scale,
model_type
],
show_progress=False,
)
21 changes: 18 additions & 3 deletions library/lpw_stable_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
import PIL.Image
import torch
from packaging import version
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection

import diffusers
from diffusers import SchedulerMixin, StableDiffusionPipeline
Expand Down Expand Up @@ -516,12 +516,13 @@ def __init__(
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
# clip_skip: int,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
image_encoder: CLIPVisionModelWithProjection = None, # Incluindo o image_encoder
requires_safety_checker: bool = True,
clip_skip: int = 1,
):
self._clip_skip_internal = clip_skip
super().__init__(
vae=vae,
text_encoder=text_encoder,
Expand All @@ -530,11 +531,25 @@ def __init__(
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
requires_safety_checker=requires_safety_checker,
)
self.clip_skip = clip_skip
self.__init__additional__()

@property
def clip_skip(self):
return self._clip_skip_internal

@clip_skip.setter
def clip_skip(self, value):
self._clip_skip_internal = value

def __setattr__(self, name: str, value):
if name == "clip_skip":
object.__setattr__(self, "_clip_skip_internal", value)
else:
super().__setattr__(name, value)

# else:
# def __init__(
# self,
Expand Down
Loading

0 comments on commit 41009ae

Please sign in to comment.