Skip to content

Face Scoring Model to Get the Beauty Score of Face

Notifications You must be signed in to change notification settings

bluceliuljx/FaceScoring

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Emotion Recognition

Emotion Recognition Implemented by ModelZoo.

Usage

Firstly, you need to clone this repository and download training data:

git clone https://github.com/ModelZoo/EmotionRecognition.git
cd EmotionRecognition
git lfs pull

Next, install the dependencies using pip:

pip3 install -r requirements.txt

Finally, just run training:

python3 train.py

If you want to continue training your model, you need to define checkpoint_restore flag in train.py:

tf.flags.DEFINE_bool('checkpoint_restore', True, help='Model restore')

And you can define the specific model with checkpoint_name which you want to continue training with:

tf.flags.DEFINE_string('checkpoint_name', 'model-178.ckpt', help='Model name')

TensorBoard

After training, you can see the transition of loss in TensorBoard.

cd events
tensorboard --logdir=.

The best accuracy is 65.64% from step 178.

Predict

Next, we can use our model to recognize the emotion.

Here are the test pictures we picked from the website:

Then put them to the folder named tests and define the model path and test folder in infer.py:

tf.flags.DEFINE_string('checkpoint_name', 'model.ckpt-178', help='Model name')
tf.flags.DEFINE_string('test_dir', 'tests/', help='Dir of test data')

Then just run inference using this cmd:

python3 infer.py

We can get the result of emotion recognition and probabilities of each emotion:

Image Path: test1.png
Predict Result: Happy
Emotion Distribution: {'Angry': 0.0, 'Disgust': 0.0, 'Fear': 0.0, 'Happy': 1.0, 'Sad': 0.0, 'Surprise': 0.0, 'Neutral': 0.0}
====================
Image Path: test2.png
Predict Result: Happy
Emotion Distribution: {'Angry': 0.0, 'Disgust': 0.0, 'Fear': 0.0, 'Happy': 0.998, 'Sad': 0.0, 'Surprise': 0.0, 'Neutral': 0.002}
====================
Image Path: test3.png
Predict Result: Surprise
Emotion Distribution: {'Angry': 0.0, 'Disgust': 0.0, 'Fear': 0.0, 'Happy': 0.0, 'Sad': 0.0, 'Surprise': 1.0, 'Neutral': 0.0}
====================
Image Path: test4.png
Predict Result: Angry
Emotion Distribution: {'Angry': 1.0, 'Disgust': 0.0, 'Fear': 0.0, 'Happy': 0.0, 'Sad': 0.0, 'Surprise': 0.0, 'Neutral': 0.0}
====================
Image Path: test5.png
Predict Result: Fear
Emotion Distribution: {'Angry': 0.04, 'Disgust': 0.002, 'Fear': 0.544, 'Happy': 0.03, 'Sad': 0.036, 'Surprise': 0.31, 'Neutral': 0.039}
====================
Image Path: test6.png
Predict Result: Sad
Emotion Distribution: {'Angry': 0.005, 'Disgust': 0.0, 'Fear': 0.027, 'Happy': 0.002, 'Sad': 0.956, 'Surprise': 0.0, 'Neutral': 0.009}

Emmm, looks good!

Pretrained Model

Looking for pretrained model?

just go to checkpoints folder, here is the model with best performance at step 178.

About

Face Scoring Model to Get the Beauty Score of Face

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%