-
-
Notifications
You must be signed in to change notification settings - Fork 781
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
203 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
#include <stdint.h> | ||
#include <math.h> | ||
#include <string.h> | ||
#include "ftoa.h" | ||
|
||
/* Convert IEEE single precison numbers into decimal ASCII strings, while | ||
satisfying the following two properties: | ||
1) Calling strtof or '(float) strtod' on the result must produce the | ||
original float, independent of the rounding mode used by strtof/strtod. | ||
2) Minimize the number of produced decimal digits. E.g. the float 0.7f | ||
should convert to "0.7", not "0.69999999". | ||
To solve this we use a dedicated single precision version of | ||
Florian Loitsch's Grisu2 algorithm. See | ||
http://florian.loitsch.com/publications/dtoa-pldi2010.pdf?attredirects=0 | ||
The code below is derived from Loitsch's C code, which | ||
implements the same algorithm for IEEE double precision. See | ||
http://florian.loitsch.com/publications/bench.tar.gz?attredirects=0 | ||
Adapted from https://github.com/bofh453/ftoa-fast/ | ||
*/ | ||
|
||
#define DIY_SIGNIFICAND_SIZE 64 | ||
#define SP_SIGNIFICAND_MASK 0x7fffff | ||
#define SP_HIDDEN_BIT 0x800000 /* 2^23 */ | ||
|
||
typedef union _f32 { | ||
float f; | ||
unsigned int i; | ||
} _f32; | ||
|
||
#if defined(__x86_64__) || defined(__amd64__) | ||
static uint64_t multiply(uint64_t x, uint32_t y) | ||
{ | ||
uint64_t y0 = ((uint64_t)y << 32), ac, tmp; | ||
__asm__ __volatile__("mulq %3" : "=a"(tmp), "=d"(ac) : "%0"(x), "rm"(y0)); | ||
// tmp += 0x80000000; /* Round. */ | ||
return ac + (tmp >> 63); | ||
} | ||
#else | ||
static uint64_t multiply(uint64_t x, uint32_t y) | ||
{ | ||
uint64_t xlo = (x & 0xffffffff); | ||
uint64_t xhi = (x >> 32); | ||
return ((xhi * y) + ((xlo * y) >> 31)); | ||
} | ||
#endif | ||
|
||
static int k_comp(int n) | ||
{ | ||
/* k = n * log(2); */ | ||
int32_t k = (int32_t)n * 97879 / 325147; | ||
return n < 0 ? k - 1 : k; | ||
} | ||
|
||
/* Cached powers of ten from 10**-37..10**40. | ||
Produced using GNU MPFR's mpfr_pow_si. */ | ||
|
||
/* Significands. */ | ||
static uint64_t powers_ten[78] = {0x881cea14545c7575, 0xaa242499697392d3, 0xd4ad2dbfc3d07788, 0x84ec3c97da624ab5, | ||
0xa6274bbdd0fadd62, 0xcfb11ead453994ba, 0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3e, | ||
0xfd87b5f28300ca0e, 0x9e74d1b791e07e48, 0xc612062576589ddb, 0xf79687aed3eec551, 0x9abe14cd44753b53, | ||
0xc16d9a0095928a27, 0xf1c90080baf72cb1, 0x971da05074da7bef, 0xbce5086492111aeb, 0xec1e4a7db69561a5, | ||
0x9392ee8e921d5d07, 0xb877aa3236a4b449, 0xe69594bec44de15b, 0x901d7cf73ab0acd9, 0xb424dc35095cd80f, | ||
0xe12e13424bb40e13, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff, 0xdbe6fecebdedd5bf, 0x89705f4136b4a597, | ||
0xabcc77118461cefd, 0xd6bf94d5e57a42bc, 0x8637bd05af6c69b6, 0xa7c5ac471b478423, 0xd1b71758e219652c, | ||
0x83126e978d4fdf3b, 0xa3d70a3d70a3d70a, 0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000, | ||
0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000, 0xc350000000000000, 0xf424000000000000, | ||
0x9896800000000000, 0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000, 0xba43b74000000000, | ||
0xe8d4a51000000000, 0x9184e72a00000000, 0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000, | ||
0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000, 0xad78ebc5ac620000, 0xd8d726b7177a8000, | ||
0x878678326eac9000, 0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0, 0xa56fa5b99019a5c8, | ||
0xcecb8f27f4200f3a, 0x813f3978f8940984, 0xa18f07d736b90be5, 0xc9f2c9cd04674edf, 0xfc6f7c4045812296, | ||
0x9dc5ada82b70b59e, 0xc5371912364ce305, 0xf684df56c3e01bc7, 0x9a130b963a6c115c, 0xc097ce7bc90715b3, | ||
0xf0bdc21abb48db20, 0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd}; | ||
|
||
/* Exponents. */ | ||
static int8_t powers_ten_e[78] = {-127, -124, -121, -117, -114, -111, -107, -104, -101, -98, -94, -91, -88, -84, -81, | ||
-78, -74, -71, -68, -64, -61, -58, -54, -51, -48, -44, -41, -38, -34, -31, -28, -24, -21, -18, -14, -11, -8, -4, -1, | ||
2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 35, 39, 42, 45, 49, 52, 55, 59, 62, 65, 69, 72, 75, 79, 82, 85, 89, 92, 95, 98, | ||
102, 105, 108, 112, 115, 118, 122, 125, 127}; | ||
|
||
/* Special cases. */ | ||
static const char *fp_class_s[] = { | ||
"nan", "inf", "0.0", "sub", "nrm"}; // not a number, infinity, zero, subnormal, normal | ||
|
||
/* | ||
* compute decimal integer m, exp such that: | ||
* f = m*10^exp | ||
* m is as short as possible without losing exactness | ||
* output string fits in 15 characters (14 characters plus ending '\0'). | ||
*/ | ||
unsigned int ftoa(char *s, float f) | ||
{ | ||
uint32_t w_lower, w_upper; | ||
uint64_t D_upper, D_lower, delta, c_mk, one, p2; | ||
_f32 f2; | ||
int ve, mk = 0, kabs = 0; | ||
unsigned int len = 0; | ||
unsigned char digit, p1; | ||
|
||
int fp_class = fpclassify(f); | ||
if (fp_class < FP_SUBNORMAL) { | ||
memcpy(s, fp_class_s[fp_class], 4); | ||
return 3; | ||
} | ||
|
||
if (signbit(f)) { | ||
s[len++] = '-'; | ||
f2.f = -f; | ||
} else { | ||
f2.f = f; | ||
} | ||
ve = (f2.i >> 23) - 127 - 1; | ||
f2.i = ((f2.i & SP_SIGNIFICAND_MASK) | SP_HIDDEN_BIT); | ||
w_upper = (f2.i << 2) + 2; | ||
w_lower = (f2.i << 2) - 1; | ||
if (f2.i != SP_HIDDEN_BIT) { | ||
w_lower--; | ||
} | ||
w_upper <<= (DIY_SIGNIFICAND_SIZE - 58); | ||
w_lower <<= (DIY_SIGNIFICAND_SIZE - 58); | ||
|
||
mk = k_comp(ve - 1); | ||
ve = ve + powers_ten_e[37 - mk] - DIY_SIGNIFICAND_SIZE + 7; | ||
one = ((uint64_t)1 << -ve) - 1; | ||
|
||
c_mk = powers_ten[37 - mk]; | ||
D_upper = multiply(c_mk, w_upper); | ||
D_lower = multiply(c_mk, w_lower); | ||
|
||
D_upper--; | ||
D_lower++; | ||
|
||
delta = (D_upper - D_lower); | ||
p1 = D_upper >> -ve; | ||
p2 = D_upper & one; | ||
|
||
digit = p1 / 10; | ||
if (digit) { | ||
s[len++] = 0x30 + digit; | ||
s[len++] = '.'; | ||
mk++; | ||
} | ||
p1 %= 10; | ||
s[len++] = 0x30 + p1; | ||
if (!digit) | ||
s[len++] = '.'; | ||
do { | ||
p2 *= 10; | ||
s[len++] = 0x30 + (p2 >> -ve); | ||
p2 &= one; | ||
delta *= 10; | ||
} while (p2 > delta); | ||
|
||
s[len++] = 'e'; | ||
if (mk < 0) { | ||
s[len++] = '-'; | ||
kabs = -mk; | ||
} else { | ||
s[len++] = '+'; | ||
kabs = mk; | ||
} | ||
s[len++] = (kabs / 10) + 0x30; | ||
s[len++] = (kabs % 10) + 0x30; | ||
s[len] = 0; | ||
return len; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
#ifndef FTOA_H | ||
#define FTOA_H | ||
unsigned int ftoa(char *s, float f); | ||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters