Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Deduplicate helpers & fix lint issues from #1099 #1107

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 20 additions & 7 deletions tests/helpers.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from io import BytesIO
from itertools import product
import random
from typing import Any, List
Expand All @@ -7,6 +8,25 @@
test_dims_rng = random.Random(42)


TRUE_FALSE = (True, False)
BOOLEAN_TRIPLES = list(product(TRUE_FALSE, repeat=3)) # all combinations of (bool, bool, bool)
BOOLEAN_TUPLES = list(product(TRUE_FALSE, repeat=2)) # all combinations of (bool, bool)


def torch_save_to_buffer(obj):
buffer = BytesIO()
torch.save(obj, buffer)
buffer.seek(0)
return buffer


def torch_load_from_buffer(buffer):
buffer.seek(0)
obj = torch.load(buffer)
buffer.seek(0)
return obj


def get_test_dims(min: int, max: int, *, n: int) -> List[int]:
return [test_dims_rng.randint(min, max) for _ in range(n)]

Expand Down Expand Up @@ -42,10 +62,3 @@ def id_formatter(label: str):

def describe_dtype(dtype: torch.dtype) -> str:
return DTYPE_NAMES.get(dtype) or str(dtype).rpartition(".")[2]


TRUE_FALSE = (True, False)
BOOLEAN_TRIPLES = list(
product(TRUE_FALSE, repeat=3)
) # all combinations of (bool, bool, bool)
BOOLEAN_TUPLES = list(product(TRUE_FALSE, repeat=2)) # all combinations of (bool, bool)
14 changes: 1 addition & 13 deletions tests/test_linear4bit.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
import copy
from io import BytesIO
import os
import pickle
from tempfile import TemporaryDirectory
Expand All @@ -8,7 +7,7 @@
import torch

import bitsandbytes as bnb
from tests.helpers import TRUE_FALSE
from tests.helpers import TRUE_FALSE, torch_load_from_buffer, torch_save_to_buffer

storage = {
"uint8": torch.uint8,
Expand All @@ -17,17 +16,6 @@
"float32": torch.float32,
}

def torch_save_to_buffer(obj):
buffer = BytesIO()
torch.save(obj, buffer)
buffer.seek(0)
return buffer

def torch_load_from_buffer(buffer):
buffer.seek(0)
obj = torch.load(buffer)
buffer.seek(0)
return obj

@pytest.mark.parametrize("quant_storage", ["uint8", "float16", "bfloat16", "float32"])
@pytest.mark.parametrize("bias", TRUE_FALSE)
Expand Down
21 changes: 7 additions & 14 deletions tests/test_linear8bitlt.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
from contextlib import nullcontext
from io import BytesIO
import os
from tempfile import TemporaryDirectory

Expand All @@ -10,7 +9,12 @@
from bitsandbytes import functional as F
from bitsandbytes.autograd import get_inverse_transform_indices, undo_layout
from bitsandbytes.nn.modules import Linear8bitLt
from tests.helpers import TRUE_FALSE, id_formatter
from tests.helpers import (
TRUE_FALSE,
id_formatter,
torch_load_from_buffer,
torch_save_to_buffer,
)

# contributed by Alex Borzunov, see:
# https://github.com/bigscience-workshop/petals/blob/main/tests/test_linear8bitlt.py
Expand Down Expand Up @@ -66,17 +70,6 @@ def test_linear_no_igemmlt():
assert linear_custom.state.CB is not None
assert linear_custom.state.CxB is None

def torch_save_to_buffer(obj):
buffer = BytesIO()
torch.save(obj, buffer)
buffer.seek(0)
return buffer

def torch_load_from_buffer(buffer):
buffer.seek(0)
obj = torch.load(buffer)
buffer.seek(0)
return obj

@pytest.mark.parametrize("has_fp16_weights", TRUE_FALSE, ids=id_formatter("has_fp16_weights"))
@pytest.mark.parametrize("serialize_before_forward", TRUE_FALSE, ids=id_formatter("serialize_before_forward"))
Expand Down Expand Up @@ -171,4 +164,4 @@ def test_linear_serialization(has_fp16_weights, serialize_before_forward, deseri
assert torch.allclose(fx_first, fx_second, atol=1e-5)
assert torch.allclose(x_first.grad, x_second.grad, atol=1e-5)
assert torch.allclose(fx_first, fx_third, atol=1e-5)
assert torch.allclose(x_first.grad, x_third.grad, atol=1e-5)
assert torch.allclose(x_first.grad, x_third.grad, atol=1e-5)
Loading