Neural relation extraction aims to extract relations from plain text with neural models, which has been the state-of-the-art methods for relation extraction. In this project, we provide our implementations of CNN [Zeng et al., 2014] and PCNN [Zeng et al.,2015] and their extended version with sentence-level attention scheme [Lin et al., 2016] .
Precion/recall curves of CNN, CNN+ONE, CNN+AVE, CNN+ATT
Precion/recall curves of PCNN, PCNN+ONE, PCNN+AVE, PCNN+ATT
We provide NYT10 dataset we used for the task relation extraction in data/ directory. We preprocess the original data to make it satisfy the input format of our codes. The original data of NYT10 can be downloaded from:
Relation Extraction: NYT10 is originally released by the paper "Sebastian Riedel, Limin Yao, and Andrew McCallum. Modeling relations and their mentions without labeled text." [Download]
Pre-Trained Word Vectors are learned from New York Times Annotated Corpus (LDC Data LDC2008T19), which should be obtained from LDC (https://catalog.ldc.upenn.edu/LDC2008T19).
Our train set is generated by merging all training data of manual and held-out datasets, deleted those data that have overlap with the test set, and used the remain one as our training data.
To run our code, the dataset should be put in the folder data/ using the following format, containing six files
-
train.txt: training file, format (fb_mid_e1, fb_mid_e2, e1_name, e2_name, relation, sentence).
-
test.txt: test file, same format as train.txt.
-
entity2id.txt: all entities and corresponding ids, one per line.
-
relation2id.txt: all relations and corresponding ids, one per line.
-
vec.bin: the pre-train word embedding file
The source codes of various methods are put in the folders CNN+ONE/, CNN+ATT/, PCNN+ONE/, PCNN+ATT/.
Just type "make" in the corresponding folders.
For training, you need to type the following command in each model folder:
./train
The training model file will be saved in folder out/ .
For testing, you need to type the following command in each model folder:
./test
The testing result which reports the precision/recall curve will be shown in pr.txt.
If you use the code, please cite the following paper:
[Lin et al., 2016] Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. Neural Relation Extraction with Selective Attention over Instances. In Proceedings of ACL.[pdf]
[Zeng et al., 2014] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. Relation classification via convolutional deep neural network. In Proceedings of COLING.
[Zeng et al.,2015] Daojian Zeng,Kang Liu,Yubo Chen,and Jun Zhao. Distant supervision for relation extraction via piecewise convolutional neural networks. In Proceedings of EMNLP.