Skip to content

bcmcpher/cca_aging

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CCA Aging

The analysis code for performing the analyses in this paper distributed as a toolbox of MATLAB functions for reproducibility.

McPherson, B. C., & Pestilli, F. (2021). A single mode of population covariation associates brain networks structure and behavior and predicts individual subjects’ age. Communications biology, 4(1), 1-16.

Basic usage

The domain datasets (domain1, domain2, confounds, holdout) need to have correspondence between the rows (same subjects in the same order) of observations for the analysis to work.

% add tool
addpath(genpath('/path/to/repo/cca_aging'));

% estimate the cross-validated CCA
[ dat, cca ] = ccaFullKAnalysis(domain1, domain2, confounds, ...
                                dom1Names, dom2Names, confNames, labels, ...
                                25, 25, 100, 5, 15000, 'median');

% estimate the fit of a holdout variable to the primary canonical axis
[ R, S, pval ] = ccaLinRegCorr(cca, 1, holdout, 1000);

%% example plots of panels from the paper

% Figure 2a - Main Finding
ccaPlotAxisCon(cca, 1, holdout, parula(88), false, true);

% Figure 3a/b
ccaPlotRankedTrends(dat, cca, holdout, 'brain', 'load', 1, 'lines', 30);
ccaPlotRankedTrends(dat, cca, holdout, 'behavior', 'load', 1, 'lines', 30);

About

code for cca project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published