Skip to content

(4.30, Jaeha) Experiments

Jaeha edited this page Apr 30, 2021 · 1 revision

Parameters

  • model = DeepLabv3+ ResNeXt50 32x4d
  • loss function = cross entropy
  • optimizer = adam
  • scheduler = CosineAnnealingWarmupRestarts
  • batch = 8
  • input_size = 256x256
  • seed = 77c

  • max_lr, min_lr = 1e-4, 1e-6
  • Normalize는 train_all_dataset에 대하여 mean, std를 구하고 그 값으로 적용
모델 input_size 배치 epoch loss val_loss val_mIoU LB score 비고
DLV3+, resnext50[ssl] 256 8 18 0.0536 0.3546 0.5189 0.5695 base
DLV3+, resnext50[ssl] 256 8 17 0.1058 0.3337 0.5177 0.5865 +normalize

  • pretrained 'swsl'
  • Histogram Equalization, CLAHE는 train_set, val_set, test_set에 모두 p=1.0으로 적용함
모델 input_size 배치 epoch loss val_loss val_mIoU LB score 비고
DLV3+, resnext50[swsl] 256 8 20 0.0781 0.3448 0.5127 0.5924
DLV3+, resnext50[swsl] 256 8 18 0.0536 0.3812 0.4739 Histogram Eqaulization
DLV3+, resnext50[swsl] 256 8 18 0.0940 0.3402 0.4960 0.5591 CLAHE
DLV3+, resnext50[swsl] 256 8 17 0.1019 0.3427 0.5127 0.5775 +CLAHE -Normalize

  • loss가 너무 튀어서 LR을 낮춤
  • max_lr, min_lr = 5e-5, 5e-7
  • optimizer를 AdamP를 사용해 봄
모델 input_size 배치 epoch loss val_loss val_mIoU LB score 비고
DLV3+, resnext50[swsl] 256 8 15 0.0892 0.3190 0.5159
DLV3+, resnext50[swsl] 256 8 17 0.0946 0.3282 0.5344 0.6023 AdamP

  • Augmentation
    • HorizentalFlip(p=0.5)
    • VerticalFlip(p=0.5)
    • RandomRotate90(p=0.5)
모델 input_size 배치 epoch loss val_loss val_mIoU LB score 비고
DLV3+, resnext50[swsl] 256 8 18 0.0843 0.2863 0.5447 0.6002