-
Notifications
You must be signed in to change notification settings - Fork 5
(4.30, Jaeha) Experiments
Jaeha edited this page Apr 30, 2021
·
1 revision
- model = DeepLabv3+ ResNeXt50 32x4d
- loss function = cross entropy
- optimizer = adam
- scheduler = CosineAnnealingWarmupRestarts
- batch = 8
- input_size = 256x256
- seed = 77c
- max_lr, min_lr = 1e-4, 1e-6
- Normalize는 train_all_dataset에 대하여 mean, std를 구하고 그 값으로 적용
모델 | input_size | 배치 | epoch | loss | val_loss | val_mIoU | LB score | 비고 |
---|---|---|---|---|---|---|---|---|
DLV3+, resnext50[ssl] | 256 | 8 | 18 | 0.0536 | 0.3546 | 0.5189 | 0.5695 | base |
DLV3+, resnext50[ssl] | 256 | 8 | 17 | 0.1058 | 0.3337 | 0.5177 | 0.5865 | +normalize |
- pretrained 'swsl'
- Histogram Equalization, CLAHE는 train_set, val_set, test_set에 모두 p=1.0으로 적용함
모델 | input_size | 배치 | epoch | loss | val_loss | val_mIoU | LB score | 비고 |
---|---|---|---|---|---|---|---|---|
DLV3+, resnext50[swsl] | 256 | 8 | 20 | 0.0781 | 0.3448 | 0.5127 | 0.5924 | |
DLV3+, resnext50[swsl] | 256 | 8 | 18 | 0.0536 | 0.3812 | 0.4739 | Histogram Eqaulization | |
DLV3+, resnext50[swsl] | 256 | 8 | 18 | 0.0940 | 0.3402 | 0.4960 | 0.5591 | CLAHE |
DLV3+, resnext50[swsl] | 256 | 8 | 17 | 0.1019 | 0.3427 | 0.5127 | 0.5775 | +CLAHE -Normalize |
- loss가 너무 튀어서 LR을 낮춤
- max_lr, min_lr = 5e-5, 5e-7
- optimizer를 AdamP를 사용해 봄
모델 | input_size | 배치 | epoch | loss | val_loss | val_mIoU | LB score | 비고 |
---|---|---|---|---|---|---|---|---|
DLV3+, resnext50[swsl] | 256 | 8 | 15 | 0.0892 | 0.3190 | 0.5159 | ||
DLV3+, resnext50[swsl] | 256 | 8 | 17 | 0.0946 | 0.3282 | 0.5344 | 0.6023 | AdamP |
- Augmentation
- HorizentalFlip(p=0.5)
- VerticalFlip(p=0.5)
- RandomRotate90(p=0.5)
모델 | input_size | 배치 | epoch | loss | val_loss | val_mIoU | LB score | 비고 |
---|---|---|---|---|---|---|---|---|
DLV3+, resnext50[swsl] | 256 | 8 | 18 | 0.0843 | 0.2863 | 0.5447 | 0.6002 |