-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
105 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,105 @@ | ||
print('Hello 분리수거!') | ||
import os | ||
import json | ||
import warnings | ||
warnings.filterwarnings('ignore') | ||
|
||
import numpy as np | ||
import pandas as pd | ||
|
||
import torch | ||
from torch.utils.data import Dataset, DataLoader | ||
import segmentation_models_pytorch as smp | ||
from segmentation_models_pytorch.encoders import get_preprocessing_fn | ||
|
||
import albumentations as A | ||
from albumentations.pytorch import ToTensorV2 | ||
|
||
from my_utils import * | ||
from dataloader import * | ||
#from loss import * | ||
|
||
from tqdm import tqdm | ||
|
||
device = "cuda" if torch.cuda.is_available() else "cpu" | ||
|
||
|
||
def collate_fn(batch): | ||
return tuple(zip(*batch)) | ||
|
||
|
||
def test(model, data_loader, device): | ||
size = 256 | ||
transform = A.Compose([A.Resize(256, 256)]) | ||
print('Start prediction.') | ||
model.eval() | ||
|
||
file_name_list = [] | ||
preds_array = np.empty((0, size*size), dtype=np.long) | ||
|
||
with torch.no_grad(): | ||
for step, (imgs, image_infos) in tqdm(enumerate(data_loader)): | ||
|
||
# inference (512 x 512) | ||
outs = model(torch.stack(imgs).to(device)) | ||
oms = torch.argmax(outs, dim=1).detach().cpu().numpy() | ||
# resize (256 x 256) | ||
# temp_mask = [] | ||
# for img, mask in zip(np.stack(imgs), oms): | ||
# transformed = transform(image=img, mask=mask) | ||
# mask = transformed['mask'] | ||
# temp_mask.append(mask) | ||
|
||
# oms = np.array(temp_mask) | ||
|
||
oms = oms.reshape([oms.shape[0], size*size]).astype(int) | ||
preds_array = np.vstack((preds_array, oms)) | ||
|
||
file_name_list.append([i['file_name'] for i in image_infos]) | ||
print(f"step:{step+1:3d}/{len(data_loader)}") | ||
print("End prediction.") | ||
file_names = [y for x in file_name_list for y in x] | ||
|
||
return file_names, preds_array | ||
|
||
|
||
def main(): | ||
dataset_path = '../input/data' | ||
test_path = dataset_path + '/test.json' | ||
|
||
test_transform = A.Compose([ | ||
A.Resize(256, 256), | ||
ToTensorV2() | ||
]) | ||
|
||
test_dataset = CustomDataLoader(data_dir=test_path, mode='test', transform=test_transform) | ||
|
||
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, | ||
batch_size=16, | ||
num_workers=4, | ||
collate_fn=collate_fn) | ||
|
||
model = smp.DeepLabV3Plus( | ||
encoder_name='resnext50_32x4d', | ||
encoder_weights='ssl', | ||
classes=12 | ||
) | ||
load_model(model, device, saved_dir="models", file_name="deeplabv3plus_resnext50_32x4d.pt") | ||
model.to(device) | ||
#load_model(model, device, saved_dir, file_name) | ||
# sample_submisson.csv 열기 | ||
|
||
submission = pd.read_csv('./submission/sample_submission.csv', index_col=None) | ||
|
||
# test set에 대한 prediction | ||
file_names, preds = test(model, test_loader, device) | ||
|
||
# PredictionString 대입 | ||
for file_name, string in zip(file_names, preds): | ||
submission = submission.append({"image_id" : file_name, "PredictionString" : ' '.join(str(e) for e in string.tolist())}, | ||
ignore_index=True) | ||
|
||
# submission.csv로 저장 | ||
submission.to_csv("./submission/deeplabv3plus_resnext50_32x4d.csv", index=False) | ||
|
||
if __name__ == '__main__': | ||
main() |