Skip to content

Commit

Permalink
test
Browse files Browse the repository at this point in the history
  • Loading branch information
k1smet14 committed May 21, 2021
2 parents 2f68d6f + 5962847 commit a0e8a58
Show file tree
Hide file tree
Showing 4 changed files with 533 additions and 0 deletions.
143 changes: 143 additions & 0 deletions evaluate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
# https://github.com/wkentaro/pytorch-fcn/blob/master/torchfcn/utils.py
import numpy as np
import torch
from my_utils import *


def validation(epoch, model, data_loader, criterion, device, n_class=12):
print('Start validation #{}'.format(epoch))
model.eval()
with torch.no_grad():
total_loss = 0
cnt = 0
# mIoU_list = []
hist = np.zeros((n_class, n_class))
for step, (images, masks, _) in enumerate(data_loader):

images = torch.stack(images) # (batch, channel, height, width)
masks = torch.stack(masks).long() # (batch, channel, height, width)

images, masks = images.to(device), masks.to(device)

outputs = model(images)
loss = criterion(outputs, masks)
total_loss += loss
cnt += 1

outputs = torch.argmax(outputs, dim=1).detach().cpu().numpy()

hist = add_hist(hist, masks.detach().cpu().numpy(), outputs, n_class=n_class)
# mIoU = label_accuracy_score(masks.detach().cpu().numpy(), outputs, n_class=12)[2]
acc, acc_cls, mean_iu, fwavacc = label_accuracy_score2(hist)
# mIoU_list.append(mIoU)

avrg_loss = total_loss / cnt
print('Validation #{} Average Loss: {:.4f}, mIoU: {:.4f}, acc: {:.4f}, acc_cls: {:.4f}'.format(epoch, avrg_loss, mean_iu, acc, acc_cls))

return avrg_loss, mean_iu


def validation3(epoch, model, data_loader, criterion, device, n_class=12):
print('Start validation #{}'.format(epoch))
model.eval()
with torch.no_grad():
total_loss = 0
cnt = 0
mIoU_list = []
hist = np.zeros((n_class, n_class))
all_iou = []
for step, (images, masks, _) in enumerate(data_loader):

images = torch.stack(images) # (batch, channel, height, width)
masks = torch.stack(masks).long() # (batch, channel, height, width)

images, masks = images.to(device), masks.to(device)

outputs = model(images)
loss = criterion(outputs, masks)
total_loss += loss
cnt += 1

outputs = torch.argmax(outputs, dim=1).detach().cpu().numpy()

hist = add_hist(hist, masks.detach().cpu().numpy(), outputs, n_class=n_class)

mIoU = label_accuracy_score(masks.detach().cpu().numpy(), outputs, n_class=12)
mIoU_list.append(mIoU)

batch_iou = batch_iou_score(masks.detach().cpu().numpy(), outputs, len(outputs))
all_iou.append(batch_iou)

avrg_loss = total_loss / cnt
miou2 = mIoU_score(hist)
miou3 = np.mean(all_iou)
print('Validation #{} Average Loss: {:.4f}, mIoU2: {:.4f}, mIOU3: {:.4f}'.format(epoch, avrg_loss, miou2, miou3))

return avrg_loss, np.mean(mIoU_list), miou2, miou3


def _fast_hist(label_true, label_pred, n_class):
mask = (label_true >= 0) & (label_true < n_class)
hist = np.bincount(
n_class * label_true[mask].astype(int) +
label_pred[mask], minlength=n_class ** 2).reshape(n_class, n_class)
return hist


def label_accuracy_score(label_trues, label_preds, n_class=12):
hist = np.zeros((n_class, n_class))
for lt, lp in zip(label_trues, label_preds):
hist += _fast_hist(lt.flatten(), lp.flatten(), n_class)
with np.errstate(divide='ignore', invalid='ignore'):
iu = np.diag(hist) / (
hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist)
)
mean_iu = np.nanmean(iu)
return mean_iu

def label_accuracy_score2(hist):
"""
Returns accuracy score evaluation result.
- [acc]: overall accuracy
- [acc_cls]: mean accuracy
- [mean_iu]: mean IU
- [fwavacc]: fwavacc
"""
acc = np.diag(hist).sum() / hist.sum()
with np.errstate(divide='ignore', invalid='ignore'):
acc_cls = np.diag(hist) / hist.sum(axis=1)
acc_cls = np.nanmean(acc_cls)

with np.errstate(divide='ignore', invalid='ignore'):
iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist))
mean_iu = np.nanmean(iu)

freq = hist.sum(axis=1) / hist.sum()
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
return acc, acc_cls, mean_iu, fwavacc


def add_hist(hist, label_trues, label_preds, n_class):
for lt, lp in zip(label_trues, label_preds):
hist += _fast_hist(lt.flatten(), lp.flatten(), n_class)
return hist


def batch_iou_score(label_trues, label_preds, batch_size, n_class=12):
hist = np.zeros((n_class, n_class))
batch_iou = 0
for lt, lp in zip(label_trues, label_preds):
hist = _fast_hist(lt.flatten(), lp.flatten(), n_class)
with np.errstate(divide='ignore', invalid='ignore'):
iu = np.diag(hist) / (
hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist)
)
batch_iou += np.nanmean(iu) / batch_size
return batch_iou


def mIoU_score(hist):
with np.errstate(divide='ignore', invalid='ignore'):
iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist))
mean_iu = np.nanmean(iu)
return mean_iu
35 changes: 35 additions & 0 deletions my_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
import os
import glob
import torch
import numpy as np

val_every = 1

saved_dir = './saved'
if not os.path.isdir(saved_dir):
os.mkdir(saved_dir)

def save_model(model, saved_dir, file_name='default.pt'):
check_point = {'net': model.state_dict()}
output_path = os.path.join(saved_dir, file_name)
torch.save(model.state_dict(), output_path)


def load_model(model, device, saved_dir, file_name='default.pt'):
model_path = os.path.join(saved_dir, file_name)
checkpoint = torch.load(model_path, map_location=device)
model.load_state_dict(checkpoint)


def calculate_parameter(model, print_param=False):
n_param = 0
n_conv = 0
for p_idx,(param_name,param) in enumerate(model.named_parameters()):
if param.requires_grad:
param_numpy = param.detach().cpu().numpy() # to numpy array
n_param += len(param_numpy.reshape(-1))
if print_param==True:
print ("[%d] name:[%s] shape:[%s]."%(p_idx,param_name,param_numpy.shape))
if "conv" in param_name: n_conv+=1
print("-"*50+f"\nTotal number of parameters: [{n_param:,d}]\n"+"-"*50)
print(f"Total number of Conv layer : {n_conv}")
88 changes: 88 additions & 0 deletions scheduler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
import math
import torch
from torch.optim.lr_scheduler import _LRScheduler

class CosineAnnealingWarmupRestarts(_LRScheduler):
"""
optimizer (Optimizer): Wrapped optimizer.
first_cycle_steps (int): First cycle step size.
cycle_mult(float): Cycle steps magnification. Default: -1.
max_lr(float): First cycle's max learning rate. Default: 0.1.
min_lr(float): Min learning rate. Default: 0.001.
warmup_steps(int): Linear warmup step size. Default: 0.
gamma(float): Decrease rate of max learning rate by cycle. Default: 1.
last_epoch (int): The index of last epoch. Default: -1.
"""

def __init__(self,
optimizer : torch.optim.Optimizer,
first_cycle_steps : int,
cycle_mult : float = 1.,
max_lr : float = 0.1,
min_lr : float = 0.001,
warmup_steps : int = 0,
gamma : float = 1.,
last_epoch : int = -1
):
assert warmup_steps < first_cycle_steps

self.first_cycle_steps = first_cycle_steps # first cycle step size
self.cycle_mult = cycle_mult # cycle steps magnification
self.base_max_lr = max_lr # first max learning rate
self.max_lr = max_lr # max learning rate in the current cycle
self.min_lr = min_lr # min learning rate
self.warmup_steps = warmup_steps # warmup step size
self.gamma = gamma # decrease rate of max learning rate by cycle

self.cur_cycle_steps = first_cycle_steps # first cycle step size
self.cycle = 0 # cycle count
self.step_in_cycle = last_epoch # step size of the current cycle

super(CosineAnnealingWarmupRestarts, self).__init__(optimizer, last_epoch)

# set learning rate min_lr
self.init_lr()

def init_lr(self):
self.base_lrs = []
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.min_lr
self.base_lrs.append(self.min_lr)

def get_lr(self):
if self.step_in_cycle == -1:
return self.base_lrs
elif self.step_in_cycle < self.warmup_steps:
return [(self.max_lr - base_lr)*self.step_in_cycle / self.warmup_steps + base_lr for base_lr in self.base_lrs]
else:
return [base_lr + (self.max_lr - base_lr) \
* (1 + math.cos(math.pi * (self.step_in_cycle-self.warmup_steps) \
/ (self.cur_cycle_steps - self.warmup_steps))) / 2
for base_lr in self.base_lrs]

def step(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.step_in_cycle = self.step_in_cycle + 1
if self.step_in_cycle >= self.cur_cycle_steps:
self.cycle += 1
self.step_in_cycle = self.step_in_cycle - self.cur_cycle_steps
self.cur_cycle_steps = int((self.cur_cycle_steps - self.warmup_steps) * self.cycle_mult) + self.warmup_steps
else:
if epoch >= self.first_cycle_steps:
if self.cycle_mult == 1.:
self.step_in_cycle = epoch % self.first_cycle_steps
self.cycle = epoch // self.first_cycle_steps
else:
n = int(math.log((epoch / self.first_cycle_steps * (self.cycle_mult - 1) + 1), self.cycle_mult))
self.cycle = n
self.step_in_cycle = epoch - int(self.first_cycle_steps * (self.cycle_mult ** n - 1) / (self.cycle_mult - 1))
self.cur_cycle_steps = self.first_cycle_steps * self.cycle_mult ** (n)
else:
self.cur_cycle_steps = self.first_cycle_steps
self.step_in_cycle = epoch

self.max_lr = self.base_max_lr * (self.gamma**self.cycle)
self.last_epoch = math.floor(epoch)
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
Loading

0 comments on commit a0e8a58

Please sign in to comment.