-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
204 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
#ifndef KalmanForWaveAlt_h | ||
#define KalmanForWaveAlt_h | ||
|
||
/* | ||
Copyright 2024, Mikhail Grushinskiy | ||
Kalman filter to estimate vertical displacement in wave using accelerometer, | ||
correct for accelerometer bias, estimate accelerometer bias. This method | ||
assumes that displacement follows trochoidal model and the frequency of | ||
wave is known. Frequency can be estimated using another step with Aranovskiy filter. | ||
In trochoidal wave model there is simple linear dependency between displacement and | ||
acceleration. | ||
y - displacement (at any time): | ||
y = - L / (2 *pi) * (a/g), g - acceleration of free fall constant, a - vertical acceleration | ||
wave length L: | ||
L = g * period^2 / (2 *pi) | ||
wave period via frequency: | ||
period = 1 / f | ||
a = - (2 * pi * f)^2 * y | ||
let | ||
k = - (2 * pi * f)^2 | ||
Process model: | ||
displacement: | ||
y(k) = y(k-1) + v(k-1)*T + 1/2*a(k-1)*T^2 - 1/2*a_hat*t^2 | ||
velocity: | ||
v(k) = v(k-1) + a(k-1)*T - a_hat*T | ||
acceleration (from trochoidal wave model): | ||
a(k) = k * y(k-1) | ||
accelerometer bias: | ||
a_hat(k) = a_hat(k-1) | ||
Process model in matrix form: | ||
x(k) = F*x(k-1) + B*u(k) + w(k) | ||
w(k) - zero mean noise, | ||
u(k) = 0 | ||
State vector: | ||
x = [ y, | ||
v, | ||
a, | ||
a_hat ] | ||
Input a - vertical acceleration from accelerometer | ||
Measurement - a (vertical acceleration) | ||
Observation matrix: | ||
H = [ 0, | ||
0, | ||
1, | ||
0 ] | ||
F = [[ 1, T, 1/2*T^2, -1/2*T^2 ], | ||
[ 0, 1, T, -T ], | ||
[ k, 0, 0, 0 ], | ||
[ 0, 0, 0, 1 ]] | ||
B = [ 0, | ||
0, | ||
0, | ||
0 ] | ||
*/ | ||
|
||
#include <assert.h> | ||
|
||
// create the filter structure | ||
#define KALMAN_NAME wave_alt | ||
#define KALMAN_NUM_STATES 4 | ||
#define KALMAN_NUM_INPUTS 0 | ||
#include "KalmanFactoryFilter.h" | ||
|
||
// create the measurement structure | ||
#define KALMAN_MEASUREMENT_NAME vert_accel | ||
#define KALMAN_NUM_MEASUREMENTS 1 | ||
#include "KalmanFactoryMeasurement.h" | ||
|
||
// clean up | ||
#include "KalmanFactoryCleanup.h" | ||
|
||
typedef struct kalman_wave_alt_state { | ||
float heave; // vertical displacement | ||
float vert_speed; // vertical velocity | ||
float vert_accel; // vertical acceleration | ||
float accel_bias; // accel bias | ||
} KalmanWaveAltState; | ||
|
||
matrix_t *kalman_wave_alt_get_state_transition(kalman_t *kf, matrix_data_t k, matrix_data_t delta_t) { | ||
// transition matrix [KALMAN_NUM_STATES * KALMAN_NUM_STATES] | ||
matrix_t *F = kalman_get_state_transition(kf); | ||
|
||
matrix_set(F, 0, 0, (matrix_data_t)1.0); // 1 | ||
matrix_set(F, 0, 1, (matrix_data_t)delta_t); // T | ||
matrix_set(F, 0, 2, (matrix_data_t)0.5 * delta_t * delta_t); // 0.5 * T^2 | ||
matrix_set(F, 0, 3, (matrix_data_t)-0.5 * delta_t * delta_t); // -0.5 * T^2 | ||
|
||
matrix_set(F, 1, 0, (matrix_data_t)0.0); // 0 | ||
matrix_set(F, 1, 1, (matrix_data_t)1.0); // 1 | ||
matrix_set(F, 1, 2, (matrix_data_t)delta_t); // T | ||
matrix_set(F, 1, 3, (matrix_data_t)-delta_t); // -T | ||
|
||
matrix_set(F, 2, 0, (matrix_data_t)k); // k | ||
matrix_set(F, 2, 1, (matrix_data_t)0.0); // 0 | ||
matrix_set(F, 2, 2, (matrix_data_t)0.0); // 0 | ||
matrix_set(F, 2, 3, (matrix_data_t)0.0); // 0 | ||
|
||
matrix_set(F, 3, 0, (matrix_data_t)0.0); // 0 | ||
matrix_set(F, 3, 1, (matrix_data_t)0.0); // 0 | ||
matrix_set(F, 3, 2, (matrix_data_t)0.0); // 0 | ||
matrix_set(F, 3, 3, (matrix_data_t)1.0); // 1 | ||
return F; | ||
} | ||
|
||
void kalman_wave_alt_init_defaults() { | ||
|
||
kalman_t *kf = kalman_filter_wave_alt_init(); | ||
kalman_measurement_t *kfm = kalman_filter_wave_alt_measurement_vert_accel_init(); | ||
|
||
// [KALMAN_NUM_STATES * 1] | ||
matrix_t *x = kalman_get_state_vector(kf); | ||
x->data[1] = 0.0; // vertical displacement | ||
x->data[2] = 0.0; // vertical velocity | ||
x->data[0] = 0.0; // vertical accel | ||
x->data[3] = 0.0; // accel bias | ||
|
||
// observation matrix [KALMAN_NUM_MEASUREMENTS * KALMAN_NUM_STATES] | ||
matrix_t *H = kalman_get_measurement_transformation(kfm); | ||
matrix_set(H, 0, 0, (matrix_data_t)0.0); | ||
matrix_set(H, 0, 1, (matrix_data_t)0.0); | ||
matrix_set(H, 0, 2, (matrix_data_t)1.0); | ||
matrix_set(H, 0, 3, (matrix_data_t)0.0); | ||
|
||
// observation covariance [KALMAN_NUM_MEASUREMENTS * KALMAN_NUM_MEASUREMENTS] | ||
matrix_t *R = kalman_get_process_noise(kf); | ||
matrix_set(R, 0, 0, (matrix_data_t)1.0); | ||
|
||
// initial state covariance [KALMAN_NUM_STATES * KALMAN_NUM_STATES] | ||
matrix_t *P = kalman_get_system_covariance(kf); | ||
matrix_set_symmetric(P, 0, 0, (matrix_data_t)1.0); | ||
matrix_set_symmetric(P, 0, 1, (matrix_data_t)0.0); | ||
matrix_set_symmetric(P, 0, 2, (matrix_data_t)0.0); | ||
matrix_set_symmetric(P, 0, 3, (matrix_data_t)0.0); | ||
matrix_set_symmetric(P, 1, 1, (matrix_data_t)1.0); | ||
matrix_set_symmetric(P, 1, 2, (matrix_data_t)0.0); | ||
matrix_set_symmetric(P, 1, 3, (matrix_data_t)0.0); | ||
matrix_set_symmetric(P, 2, 2, (matrix_data_t)1.0); | ||
matrix_set_symmetric(P, 2, 3, (matrix_data_t)0.0); | ||
matrix_set_symmetric(P, 3, 3, (matrix_data_t)1.0); | ||
|
||
// transition covariance [KALMAN_NUM_STATES * KALMAN_NUM_STATES] | ||
matrix_t *Q = kalman_get_process_noise(kf); | ||
matrix_data_t variance = (matrix_data_t) 1.0; | ||
matrix_set_symmetric(Q, 0, 0, (matrix_data_t)variance); | ||
matrix_set_symmetric(Q, 0, 1, (matrix_data_t)0.0); | ||
matrix_set_symmetric(Q, 0, 2, (matrix_data_t)0.0); | ||
matrix_set_symmetric(Q, 0, 3, (matrix_data_t)0.0); | ||
matrix_set_symmetric(Q, 1, 1, (matrix_data_t)0.2 * variance); | ||
matrix_set_symmetric(Q, 1, 2, (matrix_data_t)0.0); | ||
matrix_set_symmetric(Q, 1, 3, (matrix_data_t)0.0); | ||
matrix_set_symmetric(Q, 2, 2, (matrix_data_t)0.04 * variance); | ||
matrix_set_symmetric(Q, 2, 3, (matrix_data_t)0.0); | ||
matrix_set_symmetric(Q, 3, 3, (matrix_data_t)0.008 * variance); | ||
} | ||
|
||
void kalman_wave_alt_step(KalmanWaveAltState* state, float accel, float k, float delta_t) { | ||
kalman_t *kf = &kalman_filter_wave_alt; | ||
kalman_measurement_t *kfm = &kalman_filter_wave_alt_measurement_vert_accel; | ||
|
||
matrix_t *x = kalman_get_state_vector(kf); | ||
matrix_t *z = kalman_get_measurement_vector(kfm); | ||
|
||
matrix_t *F = kalman_wave_alt_get_state_transition(kf, k, delta_t); | ||
|
||
// prediction. | ||
kalman_predict(kf); | ||
|
||
// measure ... | ||
matrix_data_t measurement = accel; | ||
matrix_set(z, 0, 0, measurement); | ||
|
||
// update | ||
kalman_correct(kf, kfm); | ||
|
||
state->heave = x->data[0]; | ||
state->vert_speed = x->data[1]; | ||
state->vert_accel = x->data[2]; | ||
state->accel_bias = x->data[3]; | ||
} | ||
|
||
#endif |