-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
391 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
Package: yaps | ||
Title: Track estimation using YAPS (Yet Another Positioning Solver) | ||
Version: 1.2.0.9100 | ||
Version: 1.2.0.9102 | ||
Authors@R: c( person("Henrik", "Baktoft", email = "[email protected]", role = c("cre", "aut")), | ||
person("Karl", "Gjelland", role=c("aut")), | ||
person("Uffe H.", "Thygesen", role=c("aut")), | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
#' Internal function checking installed version vs current github version | ||
#' | ||
#' Adapted from https://github.com/hugomflavio/actel | ||
#' @noRd | ||
newPkgVersion <- function(){ | ||
rep.ver <- tryCatch(unlist(strsplit(readLines('https://raw.githubusercontent.com/baktoft/yaps/master/DESCRIPTION')[3], " "))[2], error = function(e) NULL, warning = function(w) NULL) | ||
if (!is.null(rep.ver)) { | ||
rep.ver.short <- substr(rep.ver, start = 1, stop = nchar(rep.ver) - 5) | ||
rep.ver.num <- unlist(strsplit(rep.ver.short, ".", fixed = TRUE)) | ||
inst.ver <- utils::packageVersion("yaps") | ||
inst.ver.short <- substr(inst.ver, start = 1, stop = nchar(as.character(inst.ver)) - 5) | ||
inst.ver.num <- unlist(strsplit(inst.ver.short, ".", fixed = TRUE)) | ||
if (any(rep.ver.short > inst.ver.short)){ | ||
return(TRUE) | ||
} else { | ||
return(FALSE) | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
--- | ||
output: | ||
rmarkdown::github_document | ||
|
||
params: | ||
redo_all: TRUE | ||
redo_sync_ssu1: TRUE | ||
redo_yaps_ssu1: TRUE | ||
--- | ||
|
||
<!-- README_sync.md is generated from README_sync.Rmd. Please edit that file --> | ||
|
||
```{r, include = FALSE} | ||
knitr::opts_chunk$set( | ||
collapse = TRUE, | ||
comment = "#>", | ||
fig.path = "man/figures/README_sync-" | ||
) | ||
``` | ||
|
||
# YAPS - (Yet Another Positioning Solver) | ||
Welcome to the `yaps` repository. The `yaps` package is based on the original YAPS presented in Baktoft, Gjelland, Økland & Thygesen (2017): [Positioning of aquatic animals based on time-of-arrival and random walk models using YAPS (Yet Another Positioning Solver)](https://www.nature.com/articles/s41598-017-14278-z.pdf) | ||
|
||
To use `yaps` on own data, you need to compile a TOA-matrix based on synchronized hydrophone data and replace the hydros dataframe with actual hydrophone positions. A complete step-by-step guide on how to do this, can be found in our pre-print paper [Opening the black box of fish tracking using acoustic telemetry](https://www.biorxiv.org/content/10.1101/2019.12.16.877688v1). The example in this guide is based on data collected using a 69 kHz PPM-based system (Vemco VR2). We are working towards adding examples based on data collected using other manufacturers. | ||
|
||
|
||
For an alternative approach (in python) to prepare your data for `yaps`, have a look at Jenna Vergeynst's github repos [time_synchronization](https://github.com/JennaVergeynst/time_synchronization) and [prepare_toa_for_yaps](https://github.com/JennaVergeynst/prepare_toa_for_yaps). | ||
|
||
|
||
The `yaps` package requires [devtools](https://cran.r-project.org/web/packages/devtools/index.html) and [TMB](https://github.com/kaskr/adcomp). | ||
Please see for [instructions](https://github.com/kaskr/adcomp/wiki/Download) on TMB installation. Remember to install [Rtools](https://cran.r-project.org/bin/windows/Rtools/) as specified in the TMB documentation. | ||
|
||
|
||
## Disclaimer | ||
**`yaps` obeys the fundamental rule of “garbage in, garbage out”. Therefore, DO NOT expect `yaps` to salvage a poorly designed study, nor to turn crappy data into gold.** | ||
We have attempted to make both synchronization process and track estimation user-friendly. However, it is not trivial to synchronize hydrophones (let alone automating the process) based on detections in a variable and often noisy environment. Hydrophones might be replaced/shifted and if not fixed securely, hydrophones might move/be moved during a study. Additionally, hydrophone performance and output format varies considerably among (and within) manufacturers. On top of that, hydrophones don't always behave and perform as expected. For instance, some hydrophone models autonomously initiate reboots causing perturbation of varying magnitude and/or duration of the internal clock at apparently random time intervals. Therefore, the functions in `yaps` might perform sub-optimal or even fail miserably when applied to new data. If/when this happens, please let us know through a direct message or leave a bug-report. Also note, the to-do list for improvements and tweaks is long and growing, so stay tuned for updates. | ||
|
||
|
||
|
||
## Installation | ||
Make sure you have the newest version of `yaps` installed. For this, you need `devtools` installed - if not already installed, run `install.packages('devtools')`. | ||
`yaps` relies heavily on use of Template Model Builder [TMB](https://github.com/kaskr/adcomp) for fitting the models, so make sure `TMB` is installed and working by following the simple [TMB instructions](https://github.com/kaskr/adcomp/wiki/Download). | ||
Then install the latest version of `yaps` with: | ||
```{r eval=FALSE} | ||
install.packages("devtools") | ||
install.packages("TMB") | ||
TMB::runExample(all=TRUE) | ||
devtools::install_github("baktoft/yaps") | ||
``` | ||
|
||
|
||
## Processing example data ssu1 | ||
The code below is identical to the example workflow presented in [Opening the black box of fish tracking using acoustic telemetry](https://www.biorxiv.org/content/10.1101/2019.12.16.877688v1). See the pre-print for further explantion. | ||
```{r eval=FALSE} | ||
library(yaps) | ||
# set sync parameters | ||
max_epo_diff <- 120 | ||
min_hydros <- 2 | ||
time_keeper_idx <- 5 | ||
fixed_hydros_idx <- c(2:3, 6, 8, 11, 13:17) | ||
n_offset_day <- 2 | ||
n_ss_day <- 2 | ||
# get input data ready for getSyncModel() | ||
inp_sync <- getInpSync(sync_dat=ssu1, max_epo_diff, min_hydros, time_keeper_idx, | ||
fixed_hydros_idx, n_offset_day, n_ss_day) | ||
# fit the sync model | ||
sync_model <- getSyncModel(inp_sync, silent=TRUE) | ||
# Plot model residuals and model check plots to ensure the synchronization process was successful... | ||
plotSyncModelResids(sync_model, by='overall') | ||
plotSyncModelResids(sync_model, by='sync_tag') | ||
plotSyncModelResids(sync_model, by='hydro') | ||
plotSyncModelCheck(sync_model, by="sync_bin_sync") | ||
plotSyncModelCheck(sync_model, by="sync_bin_hydro") | ||
plotSyncModelCheck(sync_model, by="sync_tag") | ||
plotSyncModelCheck(sync_model, by="hydro") | ||
# Apply the synchronization model to all data | ||
detections_synced <- applySync(toa=ssu1$detections, hydros=ssu1$hydros, sync_model) | ||
# Prepare to estimate track using `yaps` on newly synchronized `ssu1` data | ||
hydros_yaps <- data.table::data.table(sync_model$pl$TRUE_H) | ||
colnames(hydros_yaps) <- c('hx','hy','hz') | ||
# Specify focal tag and tag specific min and max burst intervals | ||
focal_tag <- 15266 | ||
rbi_min <- 20 | ||
rbi_max <- 40 | ||
# Extract relevant data from the synced data | ||
synced_dat_ssu1 <- detections_synced[tag == focal_tag] | ||
# Compile TOA-matrix to use for yaps | ||
toa_ssu1 <- getToaYaps(synced_dat_ssu1, hydros_yaps, rbi_min, rbi_max) | ||
# Compile all input data needed for yaps | ||
inp_ssu1 <- getInp(hydros_yaps, toa_ssu1, E_dist="Mixture", n_ss=2, pingType="rbi", | ||
sdInits=1, rbi_min=rbi_min, rbi_max=rbi_max, ss_data_what="est", ss_data=0) | ||
# Run yaps to obtain estimated track | ||
yaps_out_ssu1 <- runYaps(inp_ssu1, silent=TRUE) | ||
# plot the estimated track | ||
plotYaps(inp=inp_ssu1, yaps_out=yaps_out_ssu1, type="map") | ||
# Add gps track for direct comparison | ||
lines(utm_y~utm_x, data=ssu1$gps, lty=2) | ||
par(mfrow=c(2,1)) | ||
plotYaps(inp=inp_ssu1, yaps_out=yaps_out_ssu1, type="coord_X") | ||
lines(utm_x~ts, data=ssu1$gps, lty=2) | ||
plotYaps(inp=inp_ssu1, yaps_out=yaps_out_ssu1, type="coord_Y") | ||
lines(utm_y~ts, data=ssu1$gps, lty=2) | ||
``` | ||
|
||
|
||
|
||
### Example using YAPS on simulated data | ||
```{r eval=FALSE} | ||
devtools::install_github("baktoft/yaps") | ||
rm(list=ls()) | ||
library(yaps) | ||
# Simulate true track of animal movement of n seconds | ||
trueTrack <- simTrueTrack(model='crw', n = 15000, deltaTime=1, shape=1, scale=0.5, addDielPattern=TRUE, ss='rw') | ||
# Simulate telemetry observations from true track. | ||
# Format and parameters depend on type of transmitter burst interval (BI) - stable (sbi) or random (rbi). | ||
pingType <- 'sbi' | ||
if(pingType == 'sbi') { # stable BI | ||
sbi_mean <- 30; sbi_sd <- 1e-4; | ||
teleTrack <- simTelemetryTrack(trueTrack, pingType=pingType, sbi_mean=sbi_mean, sbi_sd=sbi_sd) | ||
} else if(pingType == 'rbi'){ # random BI | ||
pingType <- 'rbi'; rbi_min <- 20; rbi_max <- 40; | ||
teleTrack <- simTelemetryTrack(trueTrack, pingType=pingType, rbi_min=rbi_min, rbi_max=rbi_max) | ||
} | ||
# Simulate hydrophone array | ||
hydros <- simHydros(auto=TRUE, trueTrack=trueTrack) | ||
toa_list <- simToa(teleTrack, hydros, pingType, sigmaToa=1e-4, pNA=0.25, pMP=0.01) | ||
toa <- toa_list$toa | ||
# Specify whether to use ss_data from measured water temperature (ss_data_what <- 'data') or to estimate ss in the model (ss_data_what <- 'est') | ||
ss_data_what <- 'data' | ||
if(ss_data_what == 'data') {ss_data <- teleTrack$ss} else {ss_data <- 0} | ||
if(pingType == 'sbi'){ | ||
inp <- getInp(hydros, toa, E_dist="Mixture", n_ss=10, pingType=pingType, sdInits=0, ss_data_what=ss_data_what, ss_data=ss_data) | ||
} else if(pingType == 'rbi'){ | ||
inp <- getInp(hydros, toa, E_dist="Mixture", n_ss=10, pingType=pingType, sdInits=0, rbi_min=rbi_min, rbi_max=rbi_max, ss_data_what=ss_data_what, ss_data=ss_data) | ||
} | ||
str(inp) | ||
pl <- c() | ||
maxIter <- ifelse(pingType=="sbi", 500, 5000) | ||
outTmb <- runTmb(inp, maxIter=maxIter, getPlsd=TRUE, getRep=TRUE) | ||
str(outTmb) | ||
# Estimates in pl | ||
pl <- outTmb$pl | ||
# Correcting for hydrophone centering | ||
pl$X <- outTmb$pl$X + inp$inp_params$Hx0 | ||
pl$Y <- outTmb$pl$Y + inp$inp_params$Hy0 | ||
# Error estimates in plsd | ||
plsd <- outTmb$plsd | ||
# plot the resulting estimated track | ||
plot(y~x, data=trueTrack, type="l", xlim=range(hydros$hx), ylim=range(hydros$hy), asp=1) | ||
lines(y~x, data=teleTrack) | ||
points(hy~hx, data=hydros, col="green", pch=20, cex=3) | ||
lines(pl$Y~pl$X, col="red") | ||
``` | ||
|
||
# Papers using YAPS | ||
## 2019 | ||
|
||
* Baktoft, H., Gjelland, K.Ø., Økland, F., Rehage, J.S., Rodemann, J.R., Corujo, R.S., Viadero, N., Thygesen, U.H. (2019). Opening the black box of fish tracking using acoustic telemetry | ||
bioRxiv 2019.12.16.877688; doi: https://doi.org/10.1101/2019.12.16.877688 | ||
|
||
* Silva, A.T., Bærum, K.M., Hedger, R.D., Baktoft, H., Fjeldstad, H., Gjelland, K.Ø., Økland, F. Forseth, T. (2019). Science of the Total Environment The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon. Science of the Total Environment, 135773. https://doi.org/10.1016/j.scitotenv.2019.135773 | ||
|
||
* Szabo-Meszaros, M., Forseth, T., Baktoft, H., Fjeldstad, H.-P., Silva, A.T., Gjelland, K.Ø., Økland, F., Uglem, I., Alfredsen, K. (2019). Modelling mitigation measures for smolt migration at dammed river sections. Ecohydrology, e2131. https://doi.org/10.1002/eco.2131 | ||
|
Oops, something went wrong.