Skip to content

Commit

Permalink
Dev (#12)
Browse files Browse the repository at this point in the history
  • Loading branch information
baktoft authored Dec 18, 2019
1 parent 4ebcffa commit 7974984
Show file tree
Hide file tree
Showing 5 changed files with 391 additions and 22 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: yaps
Title: Track estimation using YAPS (Yet Another Positioning Solver)
Version: 1.2.0.9100
Version: 1.2.0.9102
Authors@R: c( person("Henrik", "Baktoft", email = "[email protected]", role = c("cre", "aut")),
person("Karl", "Gjelland", role=c("aut")),
person("Uffe H.", "Thygesen", role=c("aut")),
Expand Down
19 changes: 19 additions & 0 deletions R/pkgHelperFuncs.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
#' Internal function checking installed version vs current github version
#'
#' Adapted from https://github.com/hugomflavio/actel
#' @noRd
newPkgVersion <- function(){
rep.ver <- tryCatch(unlist(strsplit(readLines('https://raw.githubusercontent.com/baktoft/yaps/master/DESCRIPTION')[3], " "))[2], error = function(e) NULL, warning = function(w) NULL)
if (!is.null(rep.ver)) {
rep.ver.short <- substr(rep.ver, start = 1, stop = nchar(rep.ver) - 5)
rep.ver.num <- unlist(strsplit(rep.ver.short, ".", fixed = TRUE))
inst.ver <- utils::packageVersion("yaps")
inst.ver.short <- substr(inst.ver, start = 1, stop = nchar(as.character(inst.ver)) - 5)
inst.ver.num <- unlist(strsplit(inst.ver.short, ".", fixed = TRUE))
if (any(rep.ver.short > inst.ver.short)){
return(TRUE)
} else {
return(FALSE)
}
}
}
9 changes: 8 additions & 1 deletion R/zzz.R
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,13 @@ if (getRversion() >= "2.15.1"){
}
#' @importFrom Rcpp sourceCpp
.onAttach <- function(lib, pkg) {
new_version_on_github <- newPkgVersion()
ver <- utils::packageVersion('yaps')
packageStartupMessage(paste0('Welcome to yaps, version: ', ver))
out_msg <- paste0('Welcome to yaps (v', ver,')')
if(new_version_on_github) {
out_msg <- paste0(out_msg, '\n There seems to be a new version of yaps available on github - please consider updating using: \n devtools::install_github("baktoft/yaps")')
}
out_msg <- paste0(out_msg, "\n Please let us know if you experience any trouble using yaps.")

packageStartupMessage(out_msg)
}
190 changes: 190 additions & 0 deletions README.Rmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
---
output:
rmarkdown::github_document

params:
redo_all: TRUE
redo_sync_ssu1: TRUE
redo_yaps_ssu1: TRUE
---

<!-- README_sync.md is generated from README_sync.Rmd. Please edit that file -->

```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README_sync-"
)
```

# YAPS - (Yet Another Positioning Solver)
Welcome to the `yaps` repository. The `yaps` package is based on the original YAPS presented in Baktoft, Gjelland, Økland & Thygesen (2017): [Positioning of aquatic animals based on time-of-arrival and random walk models using YAPS (Yet Another Positioning Solver)](https://www.nature.com/articles/s41598-017-14278-z.pdf)

To use `yaps` on own data, you need to compile a TOA-matrix based on synchronized hydrophone data and replace the hydros dataframe with actual hydrophone positions. A complete step-by-step guide on how to do this, can be found in our pre-print paper [Opening the black box of fish tracking using acoustic telemetry](https://www.biorxiv.org/content/10.1101/2019.12.16.877688v1). The example in this guide is based on data collected using a 69 kHz PPM-based system (Vemco VR2). We are working towards adding examples based on data collected using other manufacturers.


For an alternative approach (in python) to prepare your data for `yaps`, have a look at Jenna Vergeynst's github repos [time_synchronization](https://github.com/JennaVergeynst/time_synchronization) and [prepare_toa_for_yaps](https://github.com/JennaVergeynst/prepare_toa_for_yaps).


The `yaps` package requires [devtools](https://cran.r-project.org/web/packages/devtools/index.html) and [TMB](https://github.com/kaskr/adcomp).
Please see for [instructions](https://github.com/kaskr/adcomp/wiki/Download) on TMB installation. Remember to install [Rtools](https://cran.r-project.org/bin/windows/Rtools/) as specified in the TMB documentation.


## Disclaimer
**`yaps` obeys the fundamental rule of “garbage in, garbage out”. Therefore, DO NOT expect `yaps` to salvage a poorly designed study, nor to turn crappy data into gold.**
We have attempted to make both synchronization process and track estimation user-friendly. However, it is not trivial to synchronize hydrophones (let alone automating the process) based on detections in a variable and often noisy environment. Hydrophones might be replaced/shifted and if not fixed securely, hydrophones might move/be moved during a study. Additionally, hydrophone performance and output format varies considerably among (and within) manufacturers. On top of that, hydrophones don't always behave and perform as expected. For instance, some hydrophone models autonomously initiate reboots causing perturbation of varying magnitude and/or duration of the internal clock at apparently random time intervals. Therefore, the functions in `yaps` might perform sub-optimal or even fail miserably when applied to new data. If/when this happens, please let us know through a direct message or leave a bug-report. Also note, the to-do list for improvements and tweaks is long and growing, so stay tuned for updates.



## Installation
Make sure you have the newest version of `yaps` installed. For this, you need `devtools` installed - if not already installed, run `install.packages('devtools')`.
`yaps` relies heavily on use of Template Model Builder [TMB](https://github.com/kaskr/adcomp) for fitting the models, so make sure `TMB` is installed and working by following the simple [TMB instructions](https://github.com/kaskr/adcomp/wiki/Download).
Then install the latest version of `yaps` with:
```{r eval=FALSE}
install.packages("devtools")
install.packages("TMB")
TMB::runExample(all=TRUE)
devtools::install_github("baktoft/yaps")
```


## Processing example data ssu1
The code below is identical to the example workflow presented in [Opening the black box of fish tracking using acoustic telemetry](https://www.biorxiv.org/content/10.1101/2019.12.16.877688v1). See the pre-print for further explantion.
```{r eval=FALSE}
library(yaps)
# set sync parameters
max_epo_diff <- 120
min_hydros <- 2
time_keeper_idx <- 5
fixed_hydros_idx <- c(2:3, 6, 8, 11, 13:17)
n_offset_day <- 2
n_ss_day <- 2
# get input data ready for getSyncModel()
inp_sync <- getInpSync(sync_dat=ssu1, max_epo_diff, min_hydros, time_keeper_idx,
fixed_hydros_idx, n_offset_day, n_ss_day)
# fit the sync model
sync_model <- getSyncModel(inp_sync, silent=TRUE)
# Plot model residuals and model check plots to ensure the synchronization process was successful...
plotSyncModelResids(sync_model, by='overall')
plotSyncModelResids(sync_model, by='sync_tag')
plotSyncModelResids(sync_model, by='hydro')
plotSyncModelCheck(sync_model, by="sync_bin_sync")
plotSyncModelCheck(sync_model, by="sync_bin_hydro")
plotSyncModelCheck(sync_model, by="sync_tag")
plotSyncModelCheck(sync_model, by="hydro")
# Apply the synchronization model to all data
detections_synced <- applySync(toa=ssu1$detections, hydros=ssu1$hydros, sync_model)
# Prepare to estimate track using `yaps` on newly synchronized `ssu1` data
hydros_yaps <- data.table::data.table(sync_model$pl$TRUE_H)
colnames(hydros_yaps) <- c('hx','hy','hz')
# Specify focal tag and tag specific min and max burst intervals
focal_tag <- 15266
rbi_min <- 20
rbi_max <- 40
# Extract relevant data from the synced data
synced_dat_ssu1 <- detections_synced[tag == focal_tag]
# Compile TOA-matrix to use for yaps
toa_ssu1 <- getToaYaps(synced_dat_ssu1, hydros_yaps, rbi_min, rbi_max)
# Compile all input data needed for yaps
inp_ssu1 <- getInp(hydros_yaps, toa_ssu1, E_dist="Mixture", n_ss=2, pingType="rbi",
sdInits=1, rbi_min=rbi_min, rbi_max=rbi_max, ss_data_what="est", ss_data=0)
# Run yaps to obtain estimated track
yaps_out_ssu1 <- runYaps(inp_ssu1, silent=TRUE)
# plot the estimated track
plotYaps(inp=inp_ssu1, yaps_out=yaps_out_ssu1, type="map")
# Add gps track for direct comparison
lines(utm_y~utm_x, data=ssu1$gps, lty=2)
par(mfrow=c(2,1))
plotYaps(inp=inp_ssu1, yaps_out=yaps_out_ssu1, type="coord_X")
lines(utm_x~ts, data=ssu1$gps, lty=2)
plotYaps(inp=inp_ssu1, yaps_out=yaps_out_ssu1, type="coord_Y")
lines(utm_y~ts, data=ssu1$gps, lty=2)
```



### Example using YAPS on simulated data
```{r eval=FALSE}
devtools::install_github("baktoft/yaps")
rm(list=ls())
library(yaps)
# Simulate true track of animal movement of n seconds
trueTrack <- simTrueTrack(model='crw', n = 15000, deltaTime=1, shape=1, scale=0.5, addDielPattern=TRUE, ss='rw')
# Simulate telemetry observations from true track.
# Format and parameters depend on type of transmitter burst interval (BI) - stable (sbi) or random (rbi).
pingType <- 'sbi'
if(pingType == 'sbi') { # stable BI
sbi_mean <- 30; sbi_sd <- 1e-4;
teleTrack <- simTelemetryTrack(trueTrack, pingType=pingType, sbi_mean=sbi_mean, sbi_sd=sbi_sd)
} else if(pingType == 'rbi'){ # random BI
pingType <- 'rbi'; rbi_min <- 20; rbi_max <- 40;
teleTrack <- simTelemetryTrack(trueTrack, pingType=pingType, rbi_min=rbi_min, rbi_max=rbi_max)
}
# Simulate hydrophone array
hydros <- simHydros(auto=TRUE, trueTrack=trueTrack)
toa_list <- simToa(teleTrack, hydros, pingType, sigmaToa=1e-4, pNA=0.25, pMP=0.01)
toa <- toa_list$toa
# Specify whether to use ss_data from measured water temperature (ss_data_what <- 'data') or to estimate ss in the model (ss_data_what <- 'est')
ss_data_what <- 'data'
if(ss_data_what == 'data') {ss_data <- teleTrack$ss} else {ss_data <- 0}
if(pingType == 'sbi'){
inp <- getInp(hydros, toa, E_dist="Mixture", n_ss=10, pingType=pingType, sdInits=0, ss_data_what=ss_data_what, ss_data=ss_data)
} else if(pingType == 'rbi'){
inp <- getInp(hydros, toa, E_dist="Mixture", n_ss=10, pingType=pingType, sdInits=0, rbi_min=rbi_min, rbi_max=rbi_max, ss_data_what=ss_data_what, ss_data=ss_data)
}
str(inp)
pl <- c()
maxIter <- ifelse(pingType=="sbi", 500, 5000)
outTmb <- runTmb(inp, maxIter=maxIter, getPlsd=TRUE, getRep=TRUE)
str(outTmb)
# Estimates in pl
pl <- outTmb$pl
# Correcting for hydrophone centering
pl$X <- outTmb$pl$X + inp$inp_params$Hx0
pl$Y <- outTmb$pl$Y + inp$inp_params$Hy0
# Error estimates in plsd
plsd <- outTmb$plsd
# plot the resulting estimated track
plot(y~x, data=trueTrack, type="l", xlim=range(hydros$hx), ylim=range(hydros$hy), asp=1)
lines(y~x, data=teleTrack)
points(hy~hx, data=hydros, col="green", pch=20, cex=3)
lines(pl$Y~pl$X, col="red")
```

# Papers using YAPS
## 2019

* Baktoft, H., Gjelland, K.Ø., Økland, F., Rehage, J.S., Rodemann, J.R., Corujo, R.S., Viadero, N., Thygesen, U.H. (2019). Opening the black box of fish tracking using acoustic telemetry
bioRxiv 2019.12.16.877688; doi: https://doi.org/10.1101/2019.12.16.877688

* Silva, A.T., Bærum, K.M., Hedger, R.D., Baktoft, H., Fjeldstad, H., Gjelland, K.Ø., Økland, F. Forseth, T. (2019). Science of the Total Environment The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon. Science of the Total Environment, 135773. https://doi.org/10.1016/j.scitotenv.2019.135773

* Szabo-Meszaros, M., Forseth, T., Baktoft, H., Fjeldstad, H.-P., Silva, A.T., Gjelland, K.Ø., Økland, F., Uglem, I., Alfredsen, K. (2019). Modelling mitigation measures for smolt migration at dammed river sections. Ecohydrology, e2131. https://doi.org/10.1002/eco.2131

Loading

0 comments on commit 7974984

Please sign in to comment.