Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add training callback to send predictions to WandB table #521

Merged
merged 16 commits into from
Sep 13, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
154 changes: 154 additions & 0 deletions src/axolotl/utils/callbacks.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,15 @@
from optimum.bettertransformer import BetterTransformer
from tqdm import tqdm
from transformers import (
Trainer,
TrainerCallback,
TrainerControl,
TrainerState,
TrainingArguments,
)
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, IntervalStrategy

import wandb
Glavin001 marked this conversation as resolved.
Show resolved Hide resolved
from axolotl.utils.bench import log_gpu_memory_usage
from axolotl.utils.distributed import (
barrier,
Expand Down Expand Up @@ -313,3 +315,155 @@ def on_evaluate(
trainer.log(results)

return BenchEvalCallback


def log_prediction_callback_factory(trainer: Trainer, tokenizer):
class LogPredictionCallback(TrainerCallback):
"""Callback to log prediction values during each evaluation"""

def __init__(self, cfg):
self.cfg = cfg
self.logged = False

def on_evaluate(
self,
args: AxolotlTrainingArguments,
state: TrainerState,
control: TrainerControl,
# model,
# tokenizer,
Glavin001 marked this conversation as resolved.
Show resolved Hide resolved
eval_dataloader,
**kwargs,
):
LOG.info("logging predictions")

# Initialize an empty wandb.Table
table = wandb.Table(columns=["Prediction", "Ground Truth"])
Glavin001 marked this conversation as resolved.
Show resolved Hide resolved

# Iterate over the evaluation data
# for batch in eval_dataloader:
# inputs, labels = batch
# predictions = model(inputs)

# # Convert the predictions and labels to a readable format
# predictions = tokenizer.decode(predictions)
# labels = tokenizer.decode(labels)

# # Add the data to the wandb.Table
# table.add_data(predictions, labels)

# Generate fake data for the table
# for _ in range(10):
# fake_prediction = "Fake Prediction " + str(_)
# fake_ground_truth = "Fake Ground Truth " + str(_)
# table.add_data(fake_prediction, fake_ground_truth)

print(dir(eval_dataloader))

# eval_loop = trainer.prediction_loop if trainer.args.use_legacy_prediction_loop else trainer.evaluation_loop
# output = eval_loop(
# eval_dataloader,
# description="Evaluation",
# # No point gathering the predictions if there are no metrics, otherwise we defer to
# # self.args.prediction_loss_only
# # prediction_loss_only=True if trainer.compute_metrics is None else None,
# prediction_loss_only=False,
# # ignore_keys=ignore_keys,
# # metric_key_prefix=metric_key_prefix,
# )

# print(type(output))
# print(dir(output))
# print(output.predictions)
# print(output.label_ids)
# print(output.metrics)

# # Extract the predictions and labels from the output
# predictions = output.predictions
# labels = output.label_ids
# # Convert the predictions and labels to a readable format
# predictions = [tokenizer.decode(p) for p in predictions]
# labels = [tokenizer.decode(l) for l in labels]

# # Add the data to the wandb.Table
# for prediction, label in zip(predictions, labels):
# table.add_data(prediction, label)

trainer.model.eval()
# preds, refs = [], []
# loss_bench = 0
predictions = []
for batch in tqdm(eval_dataloader, total=len(eval_dataloader)):
Glavin001 marked this conversation as resolved.
Show resolved Hide resolved
(loss, logits, labels) = trainer.prediction_step(
trainer.model,
batch,
prediction_loss_only=False,
)

print("logits", logits)
print("labels", labels)

pred_tokens = []
for i, logit in enumerate(logits):
print(dir(logit))
print(logit)
print(logit.shape)
# # Convert the logits to probabilities using softmax
# probabilities = torch.softmax(logit, dim=-1)

# # Get the predicted token id (the one with the highest probability)
# predicted_token_id = torch.argmax(probabilities).item()

# # Decode the predicted token id to get the plaintext
# predicted_token = tokenizer.decode([predicted_token_id])

# # Append the predicted token to the preds list
# pred_tokens.append(predicted_token)

# Convert the logits to probabilities using softmax
probabilities = torch.softmax(logit, dim=-1)

# Get the predicted token ids (the ones with the highest probability)
predicted_token_ids = torch.argmax(probabilities, dim=-1)

# Decode the predicted token ids to get the plaintext
predicted_tokens = tokenizer.batch_decode(predicted_token_ids)
Glavin001 marked this conversation as resolved.
Show resolved Hide resolved

# Append the predicted tokens to the preds list
pred_tokens.extend(predicted_tokens)

# add prediction
# convert pred_tokens to a single string
pred_string = " ".join(pred_tokens)
predictions.append(pred_string)
Glavin001 marked this conversation as resolved.
Show resolved Hide resolved

# # Convert the predictions and labels to a readable format
# # predictions = [tokenizer.decode(p) for p in logits]
# # labels = [tokenizer.decode(l) for l in labels]

# # Add the data to the wandb.Table
# for prediction, label in zip(predictions, labels):
# table.add_data(prediction, label)

# using trainer.model generate prediction tokens for each input in eval_dataloader
# predictions = []
# for batch in eval_dataloader:
# inputs, _ = batch
# print(inputs)
# with torch.no_grad():
# outputs = trainer.model(inputs)
# print(outputs)
# next_pred = [tokenizer.decode(p) for p in outputs.logits.argmax(dim=-1).tolist()]
# print(next_pred)
# predictions.extend(next_pred)

# add the predictions to the table
for prediction in predictions:
table.add_data(prediction, "Ground Truth")
Glavin001 marked this conversation as resolved.
Show resolved Hide resolved

# Log the wandb.Table
wandb.log({"Predictions vs Ground Truth": table})
Glavin001 marked this conversation as resolved.
Show resolved Hide resolved

return control

return LogPredictionCallback
4 changes: 4 additions & 0 deletions src/axolotl/utils/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
SaveBetterTransformerModelCallback,
SavePeftModelCallback,
bench_eval_callback_factory,
log_prediction_callback_factory,
)
from axolotl.utils.collators import DataCollatorForSeq2Seq
from axolotl.utils.dataloader import MultipackDistributedDataloader
Expand Down Expand Up @@ -719,6 +720,9 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_
**trainer_kwargs,
)

LogPredictionCallback = log_prediction_callback_factory(trainer, tokenizer)
trainer.add_callback(LogPredictionCallback(cfg))
Glavin001 marked this conversation as resolved.
Show resolved Hide resolved

if cfg.do_bench_eval:
trainer.add_callback(bench_eval_callback_factory(trainer, tokenizer))

Expand Down