Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

rebased hymba multipack support #2178

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 58 additions & 0 deletions examples/hymba/fft-1.5b.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
base_model: nvidia/Hymba-1.5B-Base

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
- path: tatsu-lab/alpaca
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

trust_remote_code: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 5
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
73 changes: 73 additions & 0 deletions examples/hymba/qlora-1.5b.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
base_model: nvidia/Hymba-1.5B-Base

load_in_8bit: false
load_in_4bit: True
strict: false

datasets:
- path: tatsu-lab/alpaca
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

trust_remote_code: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 5
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
1 change: 1 addition & 0 deletions src/axolotl/monkeypatch/multipack.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
"gemmoe",
"starcoder2",
"deepseek_v2",
"hymba",
]


Expand Down
1 change: 1 addition & 0 deletions src/axolotl/utils/chat_templates.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
"qwen_25": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
"exaone": "{% for message in messages %}{% if loop.first and message['role'] != 'system' %}{{ '[|system|][|endofturn|]\n' }}{% endif %}{{ '[|' + message['role'] + '|]' + message['content'] }}{% if message['role'] == 'user' %}{{ '\n' }}{% else %}{{ '[|endofturn|]\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '[|assistant|]' }}{% endif %}",
"metharme": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'Enter RP mode. You shall reply to the user while staying in character. Your responses must be detailed, creative, immersive, and drive the scenario forward.' %}{% endif %}{{ '<|system|>' + system_message }}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>' + content.strip() }}{% elif message['role'] == 'assistant' %}{{ '<|model|>' + content.strip() }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|model|>' }}{% else %}{{ eos_token }}{% endif %}",
"hymba": "{{'<extra_id_0>System'}}{% for message in messages %}{% if message['role'] == 'system' %}{{'\n' + message['content'].strip()}}{% if tools or contexts %}{{'\n'}}{% endif %}{% endif %}{% endfor %}{% if tools %}{% for tool in tools %}{{ '\n<tool> ' + tool|tojson + ' </tool>' }}{% endfor %}{% endif %}{% if contexts %}{% if tools %}{{'\n'}}{% endif %}{% for context in contexts %}{{ '\n<context> ' + context.strip() + ' </context>' }}{% endfor %}{% endif %}{{'\n\n'}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '<extra_id_1>User\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'assistant' %}{{ '<extra_id_1>Assistant\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'tool' %}{{ '<extra_id_1>Tool\n' + message['content'].strip() + '\n' }}{% endif %}{% endfor %}{%- if add_generation_prompt %}{{'<extra_id_1>Assistant\n'}}{%- endif %}",
}


Expand Down
16 changes: 16 additions & 0 deletions src/axolotl/utils/config/models/input/v0_4_1/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -1627,3 +1627,19 @@ def check_torch_compile_auto(cls, data):
else:
data["torch_compile"] = False
return data

@model_validator(mode="before")
@classmethod
def check_hymba_torch_version(cls, data):
if "hymba" in data.get("base_model", {}).lower():
env_capabilities = data.get("env_capabilities", {})
torch_version = env_capabilities.get("torch_version")

if torch_version is None:
import torch

torch_version = str(torch.__version__).split("+", maxsplit=1)[0]

if version.parse(torch_version) < version.parse("2.5.0"):
raise ValueError("Hymba requires torch version >= 2.5")
return data
1 change: 1 addition & 0 deletions src/axolotl/utils/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -409,6 +409,7 @@ def apply_patches(self) -> None:
and self.cfg.sample_packing
):
if "auto_map" in self.model_config:
# some model config objects are not subscriptable
try:
auto_map_config = self.model_config["auto_map"]
except TypeError:
Expand Down
2 changes: 1 addition & 1 deletion tests/e2e/test_optimizers.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,8 +67,8 @@ def test_optimi_adamw(self, temp_dir):
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()

@with_temp_dir
@require_torch_2_5_1
@with_temp_dir
def test_adopt_adamw(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
Expand Down
128 changes: 127 additions & 1 deletion tests/e2e/test_packing_loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault

from .utils import check_tensorboard, with_temp_dir
from .utils import check_tensorboard, require_torch_2_5_1, with_temp_dir

LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
Expand Down Expand Up @@ -68,3 +68,129 @@ def test_loss_packed(self, temp_dir):
check_tensorboard(
temp_dir + "/runs", "train/train_loss", 2.0, "Train Loss is too high"
)


class TestUnpackedHymba(unittest.TestCase):
"""
Test case for Unpacked training of hymba models
"""

@require_torch_2_5_1
@with_temp_dir
def test_loss_unpacked(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "nvidia/Hymba-1.5B-Base",
"trust_remote_code": True,
"load_in_4bit": True,
"adapter": "qlora",
"lora_r": 32,
"lora_alpha": 16,
"lora_dropout": 0.05,
"lora_target_modules": [
"gate_proj",
"down_proj",
"up_proj",
"q_proj",
"v_proj",
"k_proj",
"o_proj",
],
"sequence_len": 1024,
"sample_packing": False,
"flash_attention": True,
"val_set_size": 0.0,
"datasets": [
{
"path": "vicgalle/alpaca-gpt4",
"type": "alpaca",
},
],
"num_epochs": 1,
"micro_batch_size": 2,
"gradient_accumulation_steps": 4,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"max_steps": 5,
"use_tensorboard": True,
}
)
if is_torch_bf16_gpu_available():
cfg.bf16 = True
else:
cfg.fp16 = True
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)

check_tensorboard(
temp_dir + "/runs", "train/train_loss", 2.0, "Train Loss is too high"
)


class TestPackedHymba(unittest.TestCase):
"""
Test case for Packed training of hymba models
"""

@require_torch_2_5_1
@with_temp_dir
def test_loss_packed(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "nvidia/Hymba-1.5B-Base",
"trust_remote_code": True,
"load_in_4bit": True,
"adapter": "qlora",
"lora_r": 32,
"lora_alpha": 16,
"lora_dropout": 0.05,
"lora_target_modules": [
"gate_proj",
"down_proj",
"up_proj",
"q_proj",
"v_proj",
"k_proj",
"o_proj",
],
"sequence_len": 1024,
"sample_packing": True,
"flash_attention": True,
"val_set_size": 0.0,
"datasets": [
{
"path": "vicgalle/alpaca-gpt4",
"type": "alpaca",
},
],
"num_epochs": 1,
"micro_batch_size": 2,
"gradient_accumulation_steps": 4,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"max_steps": 5,
"use_tensorboard": True,
}
)
if is_torch_bf16_gpu_available():
cfg.bf16 = True
else:
cfg.fp16 = True
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)

check_tensorboard(
temp_dir + "/runs", "train/train_loss", 2.0, "Train Loss is too high"
)
Loading