Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

WIP: Support table logging for mlflow, too #1506

Merged
merged 4 commits into from
Apr 9, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
WIP: Support table logging for mlflow, too
Create a `LogPredictionCallback` for both "wandb" and "mlflow" if
specified.

In `log_prediction_callback_factory`, create a generic table and make it
specific only if the newly added `logger` argument is set to "wandb"
resp. "mlflow".

See #1505
  • Loading branch information
Dave Farago committed Apr 9, 2024
commit 2b87bde0edcef0da685f16d94656ec01b2987317
7 changes: 6 additions & 1 deletion src/axolotl/core/trainer_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -943,7 +943,12 @@ def get_post_trainer_create_callbacks(self, trainer):
callbacks = []
if self.cfg.use_wandb and self.cfg.eval_table_size > 0:
LogPredictionCallback = log_prediction_callback_factory(
trainer, self.tokenizer
trainer, self.tokenizer, "wandb"
)
callbacks.append(LogPredictionCallback(self.cfg))
if self.cfg.use_mlflow and is_mlflow_available() and self.cfg.eval_table_size > 0:
LogPredictionCallback = log_prediction_callback_factory(
trainer, self.tokenizer, "mlflow"
)
callbacks.append(LogPredictionCallback(self.cfg))

Expand Down
39 changes: 20 additions & 19 deletions src/axolotl/utils/callbacks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
from typing import TYPE_CHECKING, Dict, List

import evaluate
import mlflow
import numpy as np
import pandas as pd
import torch
Expand All @@ -28,6 +29,7 @@
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, IntervalStrategy

from axolotl.utils.bench import log_gpu_memory_usage
from axolotl.utils.config.models.input.v0_4_1 import AxolotlInputConfig
from axolotl.utils.distributed import (
barrier,
broadcast_dict,
Expand Down Expand Up @@ -540,7 +542,7 @@ def predict_with_generate():
return CausalLMBenchEvalCallback


def log_prediction_callback_factory(trainer: Trainer, tokenizer):
def log_prediction_callback_factory(trainer: Trainer, tokenizer, logger: str):
class LogPredictionCallback(TrainerCallback):
"""Callback to log prediction values during each evaluation"""

Expand Down Expand Up @@ -597,15 +599,13 @@ def find_ranges(lst):
return ranges

def log_table_from_dataloader(name: str, table_dataloader):
table = wandb.Table( # type: ignore[attr-defined]
columns=[
"id",
"Prompt",
"Correct Completion",
"Predicted Completion (model.generate)",
"Predicted Completion (trainer.prediction_step)",
]
)
table_data = {
"id": [],
"Prompt": [],
"Correct Completion": [],
"Predicted Completion (model.generate)": [],
"Predicted Completion (trainer.prediction_step)": [],
}
row_index = 0

for batch in tqdm(table_dataloader):
Expand Down Expand Up @@ -709,16 +709,17 @@ def log_table_from_dataloader(name: str, table_dataloader):
) in zip(
prompt_texts, completion_texts, predicted_texts, pred_step_texts
):
table.add_data(
row_index,
prompt_text,
completion_text,
prediction_text,
pred_step_text,
)
table_data["id"].append(row_index)
table_data["Prompt"].append(prompt_text)
table_data["Correct Completion"].append(completion_text)
table_data["Predicted Completion (model.generate)"].append(prediction_text)
table_data["Predicted Completion (trainer.prediction_step)"].append(pred_step_text)
row_index += 1

wandb.run.log({f"{name} - Predictions vs Ground Truth": table}) # type: ignore[attr-defined]
if logger == "wandb":
wandb.run.log({f"{name} - Predictions vs Ground Truth": pd.DataFrame(table_data)}) # type: ignore[attr-defined]
elif logger == "mlflow":
tracking_uri = AxolotlInputConfig(**self.cfg.to_dict()).mlflow_tracking_uri
mlflow.log_table(data=table_data, artifact_file="PredictionsVsGroundTruth.json", tracking_uri = tracking_uri)

if is_main_process():
log_table_from_dataloader("Eval", eval_dataloader)
Expand Down
Loading