Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add support for adamw schedulefree #1486

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -41,3 +41,5 @@ gcsfs

trl @ git+https://github.com/huggingface/trl.git@0ee349dcd43b0f4b3169449f16751c38ac4a609f
zstandard==0.22.0

schedulefree==1.2.1
58 changes: 56 additions & 2 deletions src/axolotl/core/trainer_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,13 @@
from dataclasses import dataclass, field
from functools import wraps
from pathlib import Path
from typing import Dict, List, Literal, Optional, Type, Union
from typing import Any, Dict, List, Literal, Optional, Type, Union

import schedulefree
import torch
import transformers
from datasets import Dataset
from torch import nn
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import BatchSampler, DataLoader, RandomSampler, SequentialSampler
from transformers import (
Expand All @@ -27,7 +29,7 @@
TrainerCallback,
TrainingArguments,
)
from transformers.trainer_utils import seed_worker
from transformers.trainer_utils import EvalLoopOutput, seed_worker
from transformers.utils import is_sagemaker_mp_enabled
from trl import DPOTrainer
from trl.trainer.utils import pad_to_length
Expand Down Expand Up @@ -486,6 +488,31 @@ def compute_loss(self, model, inputs, return_outputs=False):
return self.orpo_compute_loss(model, inputs, return_outputs=return_outputs)
return super().compute_loss(model, inputs, return_outputs=return_outputs)

def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
if self.optimizer.__class__.__name__ == "AdamWScheduleFree":
self.optimizer.train()
return super().training_step(model, inputs)

def evaluation_loop(
self,
dataloader: DataLoader,
description: str,
prediction_loss_only: Optional[bool] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> EvalLoopOutput:
if self.optimizer.__class__.__name__ == "AdamWScheduleFree":
self.optimizer.eval()
return super().evaluation_loop(
dataloader,
description,
prediction_loss_only=prediction_loss_only,
ignore_keys=ignore_keys,
metric_key_prefix=metric_key_prefix,
)

@staticmethod
def orpo_concatenate_inputs(inputs, label_pad_token=-100, pad_token=0, device=None):
concatenated_batch = {}
Expand Down Expand Up @@ -1297,6 +1324,33 @@ def build(self, total_num_steps):
sys.path.append(self.cfg.torchdistx_path)
importlib.import_module("torchdistx")

if self.cfg.optimizer == "schedule_free_adamw":
sfa_kwargs = {"lr": training_arguments_kwargs["learning_rate"]}
if "adam_epsilon" in training_arguments_kwargs:
sfa_kwargs["eps"] = training_arguments_kwargs["adam_epsilon"]

if "weight_decay" in training_arguments_kwargs:
sfa_kwargs["weight_decay"] = training_arguments_kwargs["weight_decay"]

sfa_kwargs["warmup_steps"] = training_arguments_kwargs["warmup_steps"]

if (
"adam_beta1" in training_arguments_kwargs
and "adam_beta2" in training_arguments_kwargs
):
sfa_kwargs["betas"] = (
training_arguments_kwargs["adam_beta1"],
training_arguments_kwargs["adam_beta2"],
)

trainer_kwargs["optimizers"] = (
schedulefree.AdamWScheduleFree(
params=self.model.parameters(), **sfa_kwargs
),
None,
)
training_arguments_kwargs["optim"] = "adamw_hf"

training_args = (
AxolotlTrainingArguments( # pylint: disable=unexpected-keyword-arg
**training_arguments_kwargs,
Expand Down
2 changes: 1 addition & 1 deletion src/axolotl/utils/config/models/input/v0_4_1/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -314,7 +314,7 @@ class HyperparametersConfig(BaseModel):
learning_rate: Union[str, float]
weight_decay: Optional[float] = 0.0
optimizer: Optional[
Union[OptimizerNames, Literal["lion_pytorch"]]
Union[OptimizerNames, Literal["lion_pytorch", "schedule_free_adamw"]]
] = OptimizerNames.ADAMW_HF.value
optim_args: Optional[Union[str, Dict[str, Any]]] = Field(
default=None, metadata={"help": "Optional arguments to supply to optimizer."}
Expand Down
Loading